Nav: Home

Observable universe contains 10 times more galaxies than previously thought

October 13, 2016

Astronomers using data from the NASA/ESA Hubble Space Telescopes and other telescopes have performed an accurate census of the number of galaxies in the Universe. The group came to the surprising conclusion that there are at least 10 times as many galaxies in the observable Universe as previously thought. The results have clear implications for our understanding of galaxy formation, and also help solve an ancient astronomical paradox -- why is the sky dark at night?

One of the most fundamental questions in astronomy is that of just how many galaxies the Universe contains. The Hubble Deep Field images, captured in the mid 1990s, gave the first real insight into this. Myriad faint galaxies were revealed, and it was estimated that the observable Universe contains about 100 billion galaxies [1]. Now, an international team, led by Christopher Conselice from the University of Nottingham, UK, have shown that this figure is at least ten times too low.

Conselice and his team reached this conclusion using deep space images from Hubble, data from his team's previous work, and other published data [2]. They painstakingly converted the images into 3D, in order to make accurate measurements of the number of galaxies at different times in the Universe's history. In addition, they used new mathematical models which allowed them to infer the existence of galaxies which the current generation of telescopes cannot observe. This led to the surprising realisation that in order for the numbers to add up, some 90% of the galaxies in the observable Universe are actually too faint and too far away to be seen -- yet.

"It boggles the mind that over 90% of the galaxies in the Universe have yet to be studied. Who knows what interesting properties we will find when we observe these galaxies with the next generation of telescopes," explains Christopher Conselice about the far-reaching implications of the new results.

In analysing the data the team looked more than 13 billion years into the past. This showed them that galaxies are not evenly distributed throughout the Universe's history. In fact, it appears that there were a factor of 10 more galaxies per unit volume when the Universe was only a few billion years old compared with today. Most of these galaxies were relatively small and faint, with masses similar to those of the satellite galaxies surrounding the Milky Way.

These results are powerful evidence that a significant evolution has taken place throughout the Universe's history, an evolution during which galaxies merged together, dramatically reducing their total number. "This gives us a verification of the so-called top-down formation of structure in the Universe," explains Conselice.

The decreasing number of galaxies as time progresses also contributes to the solution of Olbers' paradox -- why the sky is dark at night [3]. The team came to the conclusion that there is such an abundance of galaxies that, in principle, every point in the sky contains part of a galaxy. However, most of these galaxies are invisible to the human eye and even to modern telescopes, owing to a combination of factors: redshifting of light, the Universe's dynamic nature and the absorption of light by intergalactic dust and gas, all combine to ensure that the night sky remains mostly dark.
-end-
Notes

[1] The limited speed of light and the age of the Universe mean that the entire Universe cannot be seen from Earth. The part visible within our cosmological horizon is called the observable Universe.

[2] The study uses data from Perez-Gonzalez et al. (2008), Kajisawa et al. (2009), Fontanta et al. (2004, 2006), Caputi et al. (2011), Pozzetti et al. (2009), Mortlock et al. (2011), Muzzin et al. (2013), Mortlock et al. (2015), Duncan et al. (2014), Grazian et al. (2015), Tomczak et al. (2014) and Song et al. (2015).

[3] The astronomer Heinrich Olbers argued that the night sky should be permanently flooded by light, because in an unchanging Universe filled with an infinite number of stars, every single part of the sky should be occupied by a bright object. However, our modern understanding of the Universe is that it is both finite and dynamic -- not infinite and static.

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The results are going to appear in the paper "The evolution of galaxy number density at z < 8 and its implications", to be published in the Astrophysical Journal.

The international team of astronomers in this study consists of Christopher J. Conselice (University of Nottingham, United Kingdom), Aaron Wilkinson (University of Nottingham, United Kingdom), Kenneth Duncan (Leiden University, the Netherlands), and Alice Mortlock (University of Edinburgh, United Kingdom)

Image credit: NASA, ESA

Links

Contacts

Christopher Conselice
University of Nottingham
Nottingham, United Kingdom
Tel: +44 115 951 5137
Email: conselice@nottingham.ac.uk

Mathias Jaeger
ESA/Hubble, Public Information Officer
Garching bei Munchen, Germany
Tel: +49 176 62397500
Email: mjaeger@partner.eso.org

Lindsay Brooke
University of Nottingham, Media Relations Manager
Nottingham, United Kingdom
Tel: +44 115 951 5751
Email: lindsay.brooke@nottingham.ac.uk

ESA/Hubble Information Centre

Related Universe Articles:

The largest virtual Universe ever simulated
Researchers from the University of Zurich have simulated the formation of our entire Universe with a large supercomputer.
Does the universe have a rest frame?
Physics is sometimes closer to philosophy when it comes to understanding the universe.
Ancient signals from the early universe
For the first time, theoretical physicists from the University of Basel have calculated the signal of specific gravitational wave sources that emerged fractions of a second after the Big Bang.
Big data for the universe
Astronomers at Lomonosov Moscow State University in cooperation with their French colleagues and with the help of citizen scientists have released 'The Reference Catalog of galaxy SEDs,' which contains value-added information about 800,000 galaxies.
The universe is expanding at an accelerating rate -- or is it?
Five years ago, the Nobel Prize in Physics was awarded to three astronomers for their discovery, in the late 1990s, that the universe is expanding at an accelerating pace.
Visualizing the universe
Computer scientists from the University of Utah will be working with researchers from New York University's Tandon School of Engineering and the American Museum of Natural History (AMNH) to develop OpenSpace, an open-source 3-D software for visualizing NASA astrophysics, heliophysics, planetary science and Earth science missions for planetariums and other immersive environments.
Insights into the dawn of the universe
What did the universe look like just after the Big Bang?
Exploring the mathematical universe
A team of more than 80 mathematicians from 12 countries has begun charting the terrain of rich, new mathematical worlds, and sharing their discoveries on the Web.
The expansion of the universe simulated
The universe is constantly expanding. But how does our universe evolve?
Multilingual Universe from 'Mitaka'
The door to the digital Universe has been flung open!

Related Universe Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...