Nav: Home

Drivers of evolution hidden in plain sight

October 13, 2016

Research led by the European Bioinformatics Institute (EMBL-EBI) and the University of Washington has shown that the biological diversity needed for evolution can be generated by changes in protein modifications. The findings, published today in Science, provide valuable insights into how different species adapt to different environments and could shed light on how pathogens evolve and become resistant to drugs.

"This study is about understanding how evolution works, which tells you how species adapt to changing environments over many generations," says Pedro Beltrao, a research group leader at EMBL-EBI. "For example, when you compare humans and chimps, they are obviously different, even though a good part of their genetic makeup is more or less the same. Our task is to figure out how diversity is generated, so that we can see in detail how life evolves. That helps us understand how plants and animals adapt and change, and how cancers or bacteria find their way around drugs."

A question of expression

Research into the drivers of genetic diversity has largely focused on gene expression, which controls how much of a given protein will be made, when, and in what tissue. However, the researchers found that a well-known cellular mechanism - one that controls how proteins acquire new functions - also plays a major role.

Proteins are controlled by other proteins by way of 'post-translational modification' (PTM). One type of PTM is phosphorylation: a rapid, versatile protein-regulation mechanism. During evolution PTMs can be acquired via mutations, which allows proteins to gain new functions, turn on or off at different times, and go to different places in the cell.

Previous studies comparing proteins in related species have shown very few mutations, so PTMs have not been considered to be a major factor in generating diversity. In today's study, the group found that only a few mutations are actually required to change these protein-modification sites. In other words, a small number of changes can have a big impact on how proteins and cells work.

"These mutations were hidden in plain sight - we could see them all along, but didn't know they could have such significant consequences," says Beltrao. "We only see it now after many years of developing and refining new experimental methods."

Change is the constant

Using experimental and computational methods, the researchers reconstructed the evolutionary history of phosphorylation sites - the modifications that can control proteins - in 18 different single-celled species. They determined how long these control points have existed, when they were acquired and how quickly they have changed across species over millions of years.

The group found that most of the phosphorylation sites had come about relatively recently in evolution, indicating that they are part of what make the species different - and a major contributor to evolutionary diversity.

"If a species needs to adapt to a new setting, it needs to generate a lot of diversity over many generations so that evolution has a pool of options to select from. One way for that to happen is through changes in gene expression, but changes in phosphorylation are equally effective," explains Beltrao.

Cancer: the expert lock picker

The diversity generated by PTMs is an important consideration in tackling cancer. Some cancer drugs stop tumours by blocking the signalling pathway that allows the tumour to grow, effectively placing a lock on a protein 'door'. But, through mutations, cancers find ways to create new PTMs and signalling events, effectively manufacturing millions of different keys. Most of the keys will be useless, but one is bound to fit the lock eventually, and the tumour can start growing again.

"Learning more about the role of PTMs in evolution also presents a much more reliable picture of how signalling proteins integrate and relay information inside the cell," adds Beltrao. "This in turn could present exciting new avenues for therapeutic research."
-end-


European Molecular Biology Laboratory - European Bioinformatics Institute

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...