Nav: Home

IUPUI physicist is advancing knowledge of communication within cells and molecular motors

October 13, 2016

INDIANAPOLIS -- Steve Pressé, an assistant professor of physics in the School of Science at Indiana University-Purdue University Indianapolis, has received a $1 million CAREER award, the National Science Foundation's most prestigious award in support of junior faculty. He also has received a $360,000 grant from the Department of Defense Multidisciplinary University Research Initiative, administrated by the Army Research Office.

With support from the five-year NSF CAREER award, Pressé is investigating how communication occurs within living cells and is developing Bacterial Serengeti, an interactive summer camp program to introduce elementary school students to physical science concepts relevant to living systems. He is also creating a new IUPUI undergraduate biophysics course and expanding biophysics research opportunities for both undergraduates and high school students.

His research is focused on building mathematical and computer methods to analyze data and, ultimately, understand how information transfers occur within living cells at the level at which they happen -- the level of single biological molecules.

"Making sense of the wealth of experimental data existing on living systems will lead to deep insight into how cells communicate," said Pressé. "The basic challenge is to draw meaningful models from limited snapshots of cellular events captured in action."

To explain the focus of his NSF-funded research, Pressé uses the analogy of voter polls. Polling individual voters -- the analog of a single biological molecule -- is more labor intensive and time consuming than extrapolating from representative survey data, however it provides detailed knowledge that gives predictive power.

"When you have a representative poll, like an election-day voters exit poll, you are getting a general sense. But, if you ask all the individuals in a community about their motivations you can begin building a model that may predict how things could change in time," said Pressé. "And asking individuals in the community where they happen to live -- on a college campus, in their neighborhood -- or at their job site is similar to interrogating individual biological molecules in living cells rather than in test tubes.

"Like individuals, biological molecules communicate with one another. If you keep a person sequestered for a month you probably will get a very different opinion than if you allow them to freely communicate with family, friends, co-workers and neighbors as they normally would. The same is true of biological molecules. It's worth the extra effort to look at molecules in living cells even if living cells are messy because it's unclear how representative the behaviors of biological molecules in test tubes really are."

The NSF award also provides funding for a novel summer camp program for elementary school students that will take place at the Indianapolis Zoo. During Bacteria Serengeti the K to grade 6 students will learn about predators and prey moving rapidly from the macro (lions and gazelles) to the microscopic with a focus on how bacterial predators and prey communicate.

In the research supported by the DoD initiative, Pressé is focusing on how molecular motors, with their minute size and unparalleled efficiency, work. The key to understanding the efficiency, according to Pressé, is the motor's environment. In 2015, he and colleagues from the University of California, Berkeley published a landmark study in Nature suggesting the surprising role the environment can play in dissipating heat at the nanoscopic scale of biological molecules.

"Understanding physical principles which function at the nanoscopic scale -- the molecular level -- can inspire our thinking at much larger scales," said Pressé. "Evolution has had billions of years to tinker with these motors and turn them into what they are today. The question now is what can we learn about them that can subsequently be scaled up? In other words, what can we learn that could be translated into efficiency at the level needed for human-designed and human-sized machines to operate?"

A graduate of McGill University, he earned his Ph.D. at MIT and completed postdoctoral training at the University of California, San Francisco. Pressé joined the IUPUI faculty in 2013. In addition to his research and teaching, he serves as a mentor for high school, undergraduate, graduate and postdoctoral students.
-end-
The School of Science at IUPUI is committed to excellence in teaching, research and service in the biological, physical, computational, behavioral and mathematical sciences. The School is dedicated to being a leading resource for interdisciplinary research and science education in support of Indiana's effort to expand and diversify its economy. For more information visit http://science.iupui.edu/.

Indiana University-Purdue University Indianapolis School of Science

Related Molecules Articles:

Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
Hand-knitted molecules
Molecules are usually formed in reaction vessels or laboratory flasks.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
Data storage using individual molecules
Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled.
Small molecules come into focus
Many biologically important small molecules, like hormones and amino acids, are too small to be measured by conventional detection methods.
We now know how RNA molecules are organized in cells
With their new finding, Canadian scientists urge revision of decades-old dogma on protein synthesis
A new way to create molecules for drug development
Chemists at The Ohio State University have developed a new and improved way to generate molecules that can enable the design of new types of synthetic drugs.
How ions gather water molecules around them
Charged particles in aqueous solutions are always surrounded by a shell of water molecules.
More Molecules News and Molecules Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab