Nav: Home

T-rays will 'speed up' computer memory by a factor of 1,000

October 13, 2016

Together with their colleagues from Germany and the Netherlands, scientists at the Moscow Institute of Physics and Technology (MIPT) have found a way to significantly improve computer performance. In their paper published in Nature Photonics, they propose the use of the so-called T-waves, or terahertz radiation as a means of resetting computer memory cells. This process is several thousand times faster than magnetic-field-induced switching.

"We have demonstrated an entirely new way of controlling magnetization, which relies on short electromagnetic pulses at terahertz frequencies. This is an important step towards terahertz electronics. As far as we know, our study is the first to make use of this mechanism to trigger the oscillations of magnetic subsystems," says Anatoly Zvezdin of Prokhorov General Physics Institute and MIPT, a coauthor of the paper and a USSR State Prize-winning scientist heading MIPT's Laboratory of Physics of Magnetic Heterostructures and Spintronics for Energy-Saving Information Technologies.

The rapidly increasing amounts of digital data that have to be manipulated, along with the growing complexity of the computation tasks at hand, compel hardware designers to achieve ever higher computational speeds. Many experts believe that classical computation is currently approaching a limit, beyond which no further increase in data processing speed will be practicable. This is motivating scientists all over the world to investigate possibilities of entirely different computer technologies. One of the weak spots in modern computers holding back their evolution is memory: it takes time to complete every set/reset operation for a magnetic memory cell, and reducing the duration of this cycle is a very challenging task.

A group of scientists including Sebastian Baierl of the University of Regensburg, Anatoly Zvezdin, and Alexey Kimel of Radboud University Nijmegen (the Netherlands) and Moscow Technological University (MIREA) proposed that electromagnetic pulses at terahertz frequencies (with wavelengths of about 0.1 millimeters, i.e., between those of microwaves and infrared light) could be used in memory switching instead of external magnetic fields. A more familiar device that makes use of terahertz radiation is the airport body scanner. T-rays can expose weapons or explosives concealed under a person's clothing, without causing any harm to live tissues.

To find out whether T-rays could be used for convenient memory states switching (storing "magnetic bits" of information), the researchers performed an experiment with thulium orthoferrite (TmFeO?). As a weak ferromagnet, it generates a magnetic field by virtue of the ordered alignment of the magnetic moments, or spins of atoms in the microcrystals (magnetic domains). In order to induce a reorientation of spins, an external magnetic field is necessary.

However, the experiment has shown that it is also possible to control magnetization directly by using terahertz radiation, which excites electronic transitions in thulium ions and alters the magnetic properties of both iron and thulium ions. Furthermore, the effect of T-rays proved to be almost ten times greater than that of the external magnetic field. In other words, the researchers have devised a fast and highly efficient remagnetization technique--a solid foundation for developing ultrafast memory.

The scientists expect their "T-ray switching" to work with other materials as well. Thulium orthoferrite, which was used in the experiment, happens to be convenient for the purposes of demonstration, but the proposed magnetization control scheme itself is applicable to many other magnetic materials.

"There was a Soviet research group that used orthoferrites in their studies, so this was always kind of a priority field for us. This research can be seen as a follow-up on their studies," says Anatoly Zvezdin.

Moscow Institute of Physics and Technology

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.