Nav: Home

Researchers probing the beneficial secrets in dolphins' proteins

October 13, 2016

Why reinvent the wheel when nature has the answer?

That's what researcher Michael Janech, Ph.D. of the Medical University of South Carolina, has found to be true, drawing from the field of biomimicry where researchers look to nature for creative solutions to human problems.

In Janech's case, his natural inspiration is coming from dolphins who seem to have protective proteins that may contain clues to treatments for aging-associated diseases in humans. A recent study published in Nature's Scientific Reports September 26 issue found dolphin serum contains very high levels of an antioxidant protein.

Janech, director of MUSC's Nephrology Proteomics Laboratory, said he was surprised by the finding and excited about how this might be used in future studies to help humans. Dolphins survive dives that deprive vital organs of oxygen without causing damage and that for humans would be lethal. During dives that can last as long as 90 minutes, marine mammals restrict blood flow to their kidneys, liver, heart and lungs to shunt more oxygen to the brain.

When marine mammals resurface, oxygenated blood flow is restored to those organs without the organs suffering damage. In humans, though, the same phenomenon of hypoxia or being deprived of oxygen followed by re-oxygenation, such as experienced during heart attack, stroke and acute kidney injury, causes the release of free radicals thought to damage human organs. Janech, a kidney researcher and expert in proteomics, was curious what gives dolphins this advantage.

Proteomics is the study of all proteins that are encoded by the genes, he said. "We attempt to analyze all the proteins at once rather than individual proteins at one time in a cell or a tissue or an organism. It's just like genomics - when people are looking at 20,000 genes and seeing if they are high or low in certain disease states. We're doing the same thing with certain proteins."

That's no small feat.

"There are more than 100,000 protein variants, but each protein can be modified. We have more than a million different protein variants based on modifications."

Because the diversity of proteins is so large, researchers usually require mass spectrometers that perform at high resolution, allowing investigators to accurately determine the identity of proteins and other molecules of interest. This expertise came in handy in how the current study came about.

While Janech was working with the Marine Mammal Center in Sausalito, California, and the National Marine Mammal Foundation in San Diego, California, to identify biomarkers in sea lions affected by toxic algae blooms on the west coast, he learned that some of the managed dolphins in the U.S. Navy Marine Mammal program were living much longer than wild ones.

They were developing insulin resistance and fatty liver disease as they aged, a process consistent with the development of metabolic syndrome in people. This observation presented a rare opportunity.

"That's not a model that anybody sees in nature, because dolphins usually don't get this old in nature," said Janech.

Janech joined forces with Stephanie Venn-Watson, director of the National Marine Mammal Foundation's Translational Medicine Research Program in San Diego, and Randall Wells, director of the Chicago Zoological Society's Sarasota Dolphin Research Program in Florida. Venn-Watson is a veterinary expert of the Navy's managed dolphin populations, while Wells is an internationally respected expert of wild dolphin biology.

Together the group is attempting to determine the cause for insulin resistance in managed dolphins, and then use knowledge of human and dolphin similarities to find clues for treating the condition in both species. With funding provided by the Office of Naval Research, the Janech laboratory began to track adiponectin in the serum of the managed and wild bottlenose dolphin populations.

Levels of adiponectin, an insulin-sensitizing hormone, were predicted to be different in managed dolphins with metabolic syndrome in comparison with those in the wild. In order to verify the relevance of their work to human metabolic syndrome, they also performed simple proteomic analyses in human and dolphin serum samples.

Given that the major proteins in mammals are constant across species, they expected the highest concentration of proteins to be similar in both species. What they found when they looked just below the threshold, however, was surprising, he said.

Eleven proteins were at least 100-fold more prevalent in dolphin serum than in humans. At first, the group wrote this off as a difference in genetic ancestry: at some phylogenetic branch in the evolutionary tree of development, some mammals branched off and developed into two-toed ungulates and some went on to become primates.

Bottlenose dolphins are mammals descended from even-toed ungulates such as pigs, deer, and giraffes. To check that this was the case, they also mapped the serum proteome of the pig, and were again surprised. The 100-fold rank differences in 5 of the proteins, including vanin-1 and adiponectin, could not be explained away by simple phylogenetic differences.

While adiponectin is known to be higher in dolphins, as a way to control glucose storage during feeding, very high vanin-1 was a novel finding. Interestingly, excessively high vanin-1 levels were correlated with decreased liver function in the wild dolphins, which suggests they provide a protective effect in avoiding metabolic syndrome. But Janech, Venn-Watson, and Wells also noticed another potential need for vanin-1. The function of vanin-1 is to make vitamin B5 and in doing so it releases an antioxidant that has been shown to protect tissues from injury like that which occurs after the hypoxia and re-oxygenation of diving and resurfacing.

The question is if this could work also to help humans resist the hypoxia that causes acute kidney injury, which Janech has applied for a grant to the National Science Foundation to study. He and colleagues are gathering samples from a number of different diving and non-diving marine mammals, and land-bound mammals, and mapping their proteomes as well. They have continued their current collaboration, and also included graduate students from the College of Charleston's Grice Marine Laboratory and investigators from the National Institutes of Standards and Technology at Hollings Marine Laboratory to help with their measurements.

Janech said there's much to learn from the field of biomimicry, especially paired with proteomics.

"Proteins are the workhorses of the genes. It is how the gene provides function to the cell. The action of the cell happens through the proteins. That's why we want to study the proteins. These are your enzymes," he said.

"This is the first step. We wanted to ask what's different in an animal that can do something that would hurt a human, and they do this every single day. And can we take it back to human medicine?"

Medical University of South Carolina

Related Heart Attack Articles:

Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.
A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.
Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.
Fixing a broken heart: Exploring new ways to heal damage after a heart attack
The days immediately following a heart attack are critical for survivors' longevity and long-term healing of tissue.
Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.
How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.
Heart attack patients taken directly to heart centers have better long-term survival
Heart attack patients taken directly to heart centers for lifesaving treatment have better long-term survival than those transferred from another hospital, reports a large observational study presented today at Acute Cardiovascular Care 2019, a European Society of Cardiology congress.
Among heart attack survivors, drug reduces chances of second heart attack or stroke
In a clinical trial involving 18,924 patients from 57 countries who had suffered a recent heart attack or threatened heart attack, researchers at the University of Colorado Anschutz Medical Campus and fellow scientists around the world have found that the cholesterol-lowering drug alirocumab reduced the chance of having additional heart problems or stroke.
Oxygen therapy for patients suffering from a heart attack does not prevent heart failure
Oxygen therapy does not prevent the development of heart failure.
I have had a heart attack. Do I need open heart surgery or a stent?
New advice on the choice between open heart surgery and inserting a stent via a catheter after a heart attack is launched today.
More Heart Attack News and Heart Attack Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.