Nav: Home

A possible explanation for why male mice tolerate stress better than females

October 13, 2016

The nerves we feel before a stressful event--like speaking in public, for example--are normally kept in check by a complex system of circuits in our brain. Now, scientists at Rockefeller University have identified a key molecule within this circuitry that is responsible for relieving anxiety. Intriguingly, it doesn't appear to reduce anxiety in female mice, only in males.

"This is unusual, because the particular cell type involved here is the same in the male and female brain--same in number, same in appearance," says Nathaniel Heintz, head of the Laboratory of Molecular Biology and a Howard Hughes Medical Institute investigator. "It's a rare case where a single cell type is activated by the same stimulus but yields two different behaviors in each gender."

Heintz and colleagues demonstrated that a protein called corticotropin releasing hormone binding protein (CRHBP) reduces anxiety in male mice by halting the activity of a stress-inducing hormone. Published in Cell, the results may provide insights into new therapies for anxiety-related conditions.

Divergent effects

It's a well-known fact that our social and emotional behaviors--and disorders associated with these behaviors-- vary between men and women. For example, autism is more prevalent among men, while anxiety-related disorders tend to be more common in females. Differences in hormone levels and brain circuitry are thought to contribute to this variation, but the specific mechanisms responsible are not well understood.

Previous work in the Heintz lab, however, has provided one possible explanation. The researchers characterized a novel population of neurons that are activated by oxytocin, a hormone that promotes social behaviors like bonding between mother and baby or teamwork. They found that these neurons fire more rapidly in response to oxytocin in female mice, and are important for promoting certain social behaviors in which females interact with males, but had little affect on male social behavior.

In this study, the researchers asked what this particular cell type does in a male brain, suspecting from previous research on oxytocin that the stress response may be affected. Using optogenetics, a technique in which these neurons were engineered to fire in response to light, they examined the mice performing several tasks to test their anxiety levels.

"If mice are anxious, they won't go out into unprotected areas," says Heintz. "We found that if you activate these cells in males, they will leave the protected area more often, meaning they are less anxious. But in females, activating these cells made no difference in anxiety."

These findings suggest that different behaviors are affected in male and female mice when these neurons are activated by oxytocin: anxiety is reduced in males, while social behavior is increased in females.

Same circuit, different sensitivities

Heintz and colleagues next sought to identify the molecular mechanisms at play in these varied responses. Using a technique known as TRAP--previously developed by the Heintz lab and Paul Greengard's Laboratory of Molecular and Cellular Neuroscience at Rockefeller--they looked for proteins produced by the oxytocin-sensing neurons. The CRHBP protein was among the most abundantly produced in these cells.

"Our findings led us to propose a signaling pathway in these neurons in which oxytocin stimulates production of CRHBP," says Heintz. "CRHBP then binds to a hormone called corticotropin-releasing hormone, preventing it from performing its normal job to increase stress."

The question then became, why is the anxiety-reducing effect of CRHBP dominant in males, but doesn't seem to work in females? Further experiments revealed that corticotropin-releasing hormone levels are much higher in females to begin with. One possibility, Heintz says, is that CRHBP can't lower corticotropin-releasing hormone levels enough in females to make a difference. In males, however, it lowers the level of the stress hormone below a threshold that matters behaviorally, and effectively decreases stress and anxiety.

These results may explain how oxytocin can both promote social behaviors in females and alleviate stress and anxiety in males. And they suggest that while the brain circuits that control male and female behaviors may look exactly the same, they still function differently because they don't respond the same way to certain hormones.

"But even though our findings may provide some insight into gender differences, they are even more important for understanding what may be different between individuals," Heintz says. "Emotional and social behaviors are complicated, so finding any clues to why some people are more vulnerable to anxiety than others, or why some are social while others aren't, matters. These are fundamental questions of human behavior that we don't yet understand fully."
-end-


Rockefeller University

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
Stress during pregnancy
The environment the unborn child is exposed to inside the womb can have a major effect on her or his development and future health.
New insights into how the brain adapts to stress
New research led by the University of Bristol has found that genes in the brain that play a crucial role in behavioural adaptation to stressful challenges are controlled by epigenetic mechanisms.
Uncertainty can cause more stress than inevitable pain
Knowing that there is a small chance of getting a painful electric shock can lead to significantly more stress than knowing that you will definitely be shocked.
Stress could help activate brown fat
Mild stress stimulates the activity and heat production by brown fat associated with raised cortisol, according to a study published today in Experimental Physiology.
Experiencing major stress makes some older adults better able to handle daily stress
Dealing with a major stressful event appears to make some older adults better able to cope with the ups and downs of day-to-day stress.

Related Stress Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.