Nav: Home

Silver nanoparticle concentration too low to be harmful in water supply, paper finds

October 13, 2016

Silver nanoparticles have a wide array of uses, one of which is to treat drinking water for harmful bacteria and viruses. But do silver nanoparticles also kill off potentially beneficial bacteria or cause other harmful effects to water-based ecosystems? A new paper from a team of University of Missouri College of Engineering researchers says that's not the case.

In their paper, "Governing factors affecting the impacts of silver nanoparticles on wastewater treatment," recently published in Science of the Total Environment, Civil and Environmental Engineering Department doctoral students Chiqian Zhang and Shashikanth Gajaraj and Department Chair and Professor Zhiqiang Hu worked with Ping Li of the South China University of Technology to analyze the results of approximately 300 published works on the subject of silver nanoparticles and wastewater. What they found was while silver nanoparticles can have moderately or even significantly adverse effects in large concentrations, the amount of silver nanoparticles found in our wastewater at present isn't harmful to humans or the ecosystem as a whole.

"If the concentration remains low, it's not a serious problem," Zhang said.

Silver nanoparticles are used in wastewater treatment and found increasingly in everyday products in order to combat bacteria. In terms of wastewater treatment, silver nanoparticles frequently react with sulfides in biosolids, vastly limiting their toxicity.

Zhang said many of the studies looked at high concentrations and added that if, over time, the concentration rose to much higher levels of several milligrams per liter or higher), toxicity could become a problem. But he explained that it would take decades or even longer potentially to get to that point.

"People evaluate the toxicity in a small-scale system," he said. "But with water collection systems, much of the silver nanoparticles become silver sulfide and not be harmful."
-end-


University of Missouri-Columbia

Related Wastewater Articles:

Using wastewater to monitor COVID-19
A recent review paper from an international research group shows how wastewater could provide a useful tool for monitoring COVID-19 and highlights the further research needed to develop this as a viable method for tracking virus outbreaks.
Rice engineers: Make wastewater drinkable again
Delivering water to city dwellers can become far more efficient, according to Rice University researchers who say it should involve a healthy level of recycled wastewater.
Novel coronavirus detected, monitored in wastewater
A new approach to monitoring the novel coronavirus, (as well as other dangerous pathogens and chemical agents), is being developed and refined.
Wastewater test could provide early warning of COVID-19
Researchers at Cranfield University are working on a new test to detect SARS-CoV-2 in the wastewater of communities infected with the virus.
HKU team develops new wastewater treatment process
A University of Hong Kong research team has developed a novel wastewater treatment system that can effectively remove conventional pollutants, and recover valuable resources such as phosphorus and organic materials.
Treating wastewater with ozone could convert pharmaceuticals into toxic compounds
With water scarcity intensifying, wastewater treatment and reuse are gaining popularity.
Polluted wastewater in the forecast? Try a solar umbrella
Evaporation ponds, commonly used in many industries to manage wastewater, can occupy a large footprint and often pose risks to birds and other wildlife, yet they're an economical way to deal with contaminated water.
Wastewater leak in West Texas revealed
Geophysicists at SMU say that evidence of leak occurring in a West Texas wastewater disposal well between 2007 and 2011 should raise concerns about the current potential for contaminated groundwater and damage to surrounding infrastructure.
Mapping international drug use by looking at wastewater
Wastewater-based epidemiology is a rapidly developing scientific discipline with the potential for monitoring close to real-time, population-level trends in illicit drug use.
Predicting earthquake hazards from wastewater injection
ASU-led geoscientists develop a method to forecast seismic hazards caused by the disposal of wastewater after oil and gas production.
More Wastewater News and Wastewater Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.