Nav: Home

Scientists create 'floating pixels' using soundwaves and force fields

October 13, 2016

A mid-air display of 'floating pixels' has been created by scientists.

Researchers at the Universities of Sussex and Bristol have used soundwaves to lift many tiny objects at once before spinning and flipping them using electric force fields.

The technology - called JOLED - effectively turns tiny, multi-coloured spheres into real-life pixels, which can form into floating displays or bring computer game characters to life as physical objects.

To be presented next week at a future technologies conference in Japan, the research opens up new possibilities for mobile and game designers, giving them a new way of representing digital information in a physical space.

Professor Sriram Subramanian, in the University of Sussex's School of Engineering and Informatics, is the head of lab behind the research. He says: "We've created displays in mid-air that are free-floating, where each pixel in the display can be rotated on the spot to show different colours and images.

"This opens up a whole new design space, where computer and mobile displays extend into the 3D space above the screen."

The pixels are levitated using a series of miniature ultrasound speakers that create high-pitched and high-intensity soundwaves that are inaudible but forceful enough to hold the spheres in place.

A thin coating of titanium dioxide gives the pixels an electrostatic charge, enabling them to be manipulated in mid-air by changes to an electric force field, created by tiny electrodes.

Dr Deepak Sahoo, Research Associate in Human-Computer Interaction at the University of Sussex, said: "The most exciting part of our project is that we can now demonstrate that it is possible to have a fully functioning display which is made of a large collection of small objects that are levitating in mid-air.

"JOLED could be like having a floating e-ink display that can also change its shape."

The paper is the first to demonstrate such a fine level of control over these levitating pixels, moving the technology closer to something that might soon be part of theme parks or galleries.

For example, in the future such a display could be placed in a public park to show to users the complex and changing patterns of carbon footprints of different countries or currency fluctuations in different regions of the world. This could allow the general public to clearly see the multi-dimensional data and interact with it.

Asier Marzo, research associate in the Department of Mechanical Engineering at the University of Bristol, explained: "Traditionally, we think of pixels as tiny colour-changing squares that are embedded into our screens. JOLED breaks that preconception by showing physical pixels that float in mid-air.

"In the future we would like to see complex three-dimensional shapes made of touchable pixels that levitate in front of you."

Professor Subramanian added: "In the future we plan to explore ways in which we can make the display multi-coloured and with high colour depth, so we can show more vivid colours.

"We also want to examine ways in which such a display could be used to deliver media on-demand. A screen appears in front of the user to show the media and then the objects forming the display fall to the ground when the video finishes playing."
-end-


University of Sussex

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab