Gutters teem with inconspicuous life

October 13, 2017

Scientists from the BOREA Biology of Aquatic Organisms and Ecosystems research unit (CNRS / MNHN / IRD / UPMC / University of Caen / Université des Antilles)--together with a colleague from the Max Planck Institute for Terrestrial Microbiology in Marburg, Germany--have shown that Parisian street gutters are oases of microscopic life, home to microalgae, fungi, sponges, and mollusks[1]. Grouped into communities, these microorganisms may help clean rainwater and urban waste by decomposing solid debris and pollutants such as exhaust fumes and engine oil. A deeper understanding of the role and composition of these communities could help elucidate the services rendered by gutter ecosystems. Published in the ISME Journal on October 13, 2017, the researchers' findings are the first to reveal the unsuspected biodiversity of microscopic life in Paris city streets.

Scientists from the BOREA research unit first suspected the presence of microalgae in Paris streets after noting the characteristic green or brown color of gutter water and observing the presence of bubbles, which are the result of photosynthetic activity. The researchers analyzed different samples of non-potable water from the Seine, the Ourcq Canal, curbside water outlets (for street cleaning), and street gutters to identify the microorganisms they harbored.[2]

The team identified 6,900 potential species[3] of eukaryotes[4] in the hundred or so samples of water and biofilms (consisting of communities of microorganisms) collected from every district of Paris. Diatomaceous microalgae make up a large part of this biodiversity. Also identified were other unicellular eukaryotes (i.e., amoebas, alveolates, and Rhizaria), fungi (including some known decomposers), sponges, and mollusks. Even more astonishingly, analyses revealed that nearly 70% of these species were not found in the non-potable water sources. The profiles of these microbiological communities vary greatly between sampling sites, suggesting their origin may be associated with human activities or that the microorganisms have adapted to their specific urban environment.

Hence, street gutters and the microscopic life they host appear to constitute a unique ecosystem with ecological roles still to be discovered. What are these microorganisms exactly? What do they do? Do they help clean wastewater, like tiny roadside treatment plants? How did they adapt to city life? Should they be monitored? These are all questions the researchers hope to answer by studying other kinds of life--such as prokaryotes, organisms devoid of cell nuclei, like bacteria --over longer periods of time, and even in different cities.
-end-
Other visuals are available: http://phototheque.cnrs.fr/p/491-1-1-0/

[1] This study was conducted within the scope of a CNRS PEPS (Pluridisciplinary Exploratory Projects) scheme.

[2] In Paris, non-potable water--for street cleaning or other purposes--is pumped from three stations (two drawing water from the Seine and the third from the Ourcq Canal). This water is stored in seven reservoirs before being distributed to the gutter network.

[3] The microorganisms were specifically categorized by operational taxonomic unit (OTU). Each OTU groups together individuals having close phylogenetic relationships.

[4] Eukaryotes are uni- or multicellular organisms with cell nuclei and organelles, unlike bacteria and archaea.

CNRS

Related Biodiversity Articles from Brightsurf:

Biodiversity hypothesis called into question
How can we explain the fact that no single species predominates?

Using the past to maintain future biodiversity
New research shows that safeguarding species and ecosystems and the benefits they provide for society against future climatic change requires effective solutions which can only be formulated from reliable forecasts.

Changes in farming urgent to rescue biodiversity
Humans depend on farming for their survival but this activity takes up more than one-third of the world's landmass and endangers 62% of all threatened species.

Predicting the biodiversity of rivers
Biodiversity and thus the state of river ecosystems can now be predicted by combining environmental DNA with hydrological methods, researchers from the University of Zurich and Eawag have found.

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.

Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.

Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.

Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.

Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.

Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.

Read More: Biodiversity News and Biodiversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.