Fast, accurate estimation of the Earth's magnetic field for natural disaster detection

October 13, 2018

Tokyo, Japan - Researchers from Tokyo Metropolitan University have applied machine-learning techniques to achieve fast, accurate estimates of local geomagnetic fields using data taken at multiple observation points, potentially allowing detection of changes caused by earthquakes and tsunamis. A deep neural network (DNN) model was developed and trained using existing data; the result is a fast, efficient method for estimating magnetic fields for unprecedentedly early detection of natural disasters. This is vital for developing effective warning systems that might help reduce casualties and widespread damage.

The devastation caused by earthquakes and tsunamis leaves little doubt that an effective means to predict their incidence is of paramount importance. Certainly, systems already exist for warning people just before the arrival of seismic waves; yet, it is often the case that the S-wave (or secondary wave), that is, the later part of the quake, has already arrived when the warning is given. A faster, more accurate means is sorely required to give local residents time to seek safety and minimize casualties.

It is known that earthquakes and tsunamis are accompanied by localized changes in the geomagnetic field. For earthquakes, it is primarily what is known as a piezo-magnetic effect, where the release of a massive amount of accumulated stress along a fault causes local changes in geomagnetic field; for tsunamis, it is the sudden, vast movement of the sea that causes variations in atmospheric pressure. This in turn affects the ionosphere, subsequently changing the geomagnetic field. Both can be detected by a network of observation points at various locations. The major benefit of such an approach is speed; remembering that electromagnetic waves travel at the speed of light, we can instantaneously detect the incidence of an event by observing changes in geomagnetic field.

However, how can we tell whether the detected field is anomalous or not? The geomagnetic field at various locations is a fluctuating signal; the entire method is predicated on knowing what the "normal" field at a location is.

Thus, Yuta Katori and Assoc. Prof. Kan Okubo from Tokyo Metropolitan University set out to develop a method to take measurements at multiple locations around Japan and create an estimate of the geomagnetic field at different, specific observation points. Specifically, they applied a state-of-the-art machine-learning algorithm known as a Deep Neural Network (DNN), modeled on how neurons are connected inside the human brain. By feeding the algorithm a vast amount of input taken from historical measurements, they let the algorithm create and optimize an extremely complex, multi-layered set of operations that most effectively maps the data to what was actually measured. Using half a million data points taken over 2015, they were able to create a network that can estimate the magnetic field at the observation point with unprecedented accuracy.

Given the relatively low computational cost of DNNs, the system may potentially be paired with a network of high sensitivity detectors to achieve lightning-fast detection of earthquakes and tsunamis, delivering an effective warning system that can minimize damage and save lives.
-end-
This work was supported by JSPS KAKENHI Grants-in-Aid Nos. 26289348, 24560507, and 23686130. The study has been published online in the journal IEICE Communications Express.

Tokyo Metropolitan University

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.