How deadly parasites 'glide' into human cells

October 13, 2020

Gliding movements to invade host cells

In biological terms, gliding refers to the type of movement during which a cell moves along a surface without changing its shape. This form of movement is unique to parasites from the phylum Apicomplexa, such as Plasmodium and Toxoplasma. Both parasites, which are transmitted by mosquitoes and cats, have an enormous impact on global heath. Plasmodium causes 228 million malaria infections and around 400,000 deaths per year. Toxoplasma, which infects even one third of the human population, can cause severe symptoms in some people, and is particularly dangerous during pregnancy.

Gliding enables the Apicomplexa parasites to enter and move between host cells. For example, upon entering the human body through a mosquito bite, Plasmodium glides through human skin before crossing into human blood vessels. This type of motion relies on actin and myosin, which are the same proteins that enable muscle movement in humans and other vertebrates. Myosin has a form of molecular 'legs' that 'march' along actin filaments and thereby create movement.

In Apicomplexa, myosin interacts with several other proteins, which together form a complex called the glideosome. The exact mechanism by which the glideosome works is not well understood, among other reasons because the molecular structure of most glideosome proteins are unknown. Yet understanding this mechanism could aid the development of drugs that prevent the assembly of the glideosome and thereby stop the progression of diseases such as malaria and toxoplasmosis.

Molecular stilts facilitate gliding

Scientists at EMBL Hamburg analysed the molecular structure of essential light chains (ELCs), which are glideosome proteins that bind directly to myosin. It is known that they are necessary for gliding, but their exact structure and role were unknown until now. The researchers now obtained molecular structures of ELC bound to myosin A in Toxoplasma gondii and Plasmodium falciparum using X-ray crystallography and nuclear magnetic resonance (NMR).

Their study, published in Communications Biology, shows that ELCs work like 'molecular stilts' - upon binding myosin A, the ELCs become rigid, and start to act as its lever arm. This stiffening lets myosin makes longer steps, which likely accelerates the parasite's gliding movements.

The researchers also investigated the role of calcium, a presumed gliding regulator, in the interaction between ELCs and myosin A. Surprisingly, they discovered that calcium does not influence the structure of ELCs. It does, however, increase the stability of the ELC-myosin A complex. This unexpected result shows that the glideosome architecture still hides many unknowns.

"This work has provided the first glimpse of how these organisms move around," says Matthew Bowler, an EMBL Grenoble researcher not involved in this study, who investigates Toxoplasma's strategies to control the immune system after invading cells.

"It is fascinating to see new molecular details emerge on how these parasites work outside of the host cell. The beautiful structures show how the motor that drives this motion is put together, and could provide a basis to develop new medicines to treat these diseases," continues Bowler.

Maria Bernabeu, who leads research on vascular dysfunction in cerebral malaria at the EMBL site in Barcelona, adds: "Plasmodium passage through the skin is the first stage of human infection. The advantage of targeting Plasmodium at that stage is that only about a hundred parasites are present. Understanding the parasite's gliding motility might help to develop drugs or vaccines that target Plasmodium before it multiplies."

Interdisciplinary collaboration

The work is a result of interdisciplinary collaboration between structural biologists (Löw group) and parasitologists (Gilberger group) from the European Molecular Biology Laboratory in Hamburg and Centre for Structural Systems Biology (CSSB), as well as scientists from the Bernhard Nocht Institute for Tropical Medicine, University of Hamburg and Martin-Luther-University Halle-Wittenberg. It demonstrates the potential of interdisciplinary collaborations in contributing to our understanding of biological processes and possible future strategies to combat parasitic diseases.

"Entering malaria research has been an exciting endeavour - regular exchange with experts and the interdisciplinary environment helped us to explore the field of parasitology," says Christian Löw.
-end-
EMBL is dedicated to advancing interdisciplinary infection biology research. This is reflected by projects across EMBL sites, including work on malaria by Maria Bernabeu and on Toxoplasma by Matthew Bowler, and collaborative projects like those looking at malaria or tuberculosis led by Matthias Wilmanns at EMBL Hamburg.

European Molecular Biology Laboratory

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.