Combination therapy against cancer

October 13, 2020

In their quest to destroy cancer cells, researchers are turning to combinational therapies more and more. Scientists from Germany and China have now combined a chemotherapeutic and photodynamic approach. All agents are encapsulated in nanocapsules with a protein shell to be delivered to the tumor. There, light irradiation triggers a cascade of events, which lead to the destruction of the tumor cells, the researchers write in the journal Angewandte Chemie.

Different anticancer agents use different strategies. DNA-damaging agents make the DNA dysfunctional so the tumor cannot grow. Photodynamic agents generate reactive oxygen species (ROS) when irradiated with light. These ROS then interfere with organelles in the cell and push the cells toward programmed cell death known as apoptosis.

However, some cancer types have developed resistances. Either the drug cannot enter the cell or the cells quickly repair the damaged DNA strands. To enhance effectivity, Katharina Landfester and her colleagues from the Max Planck Institute for Polymer Research, Mainz, Germany, and researchers from Dalian University of Technology, Dalian, China, combined chemotherapeutic and photodynamic agents. All agents were packed inside a nanocapsule for delivery to the tumor cells.

Photodynamic therapy can be less effective in solid tumors within which the oxygen level is too low to generate enough ROS. Therefore, the scientists used a modified system that partly recycles oxygen. In this system, a photosensitizer produces ROS after light irradiation. Enzymes of the cell convert the ROS to hydrogen peroxide. Another reagent called Fenton reagent--which is basically iron in its highest oxidation state--then back-transforms the hydrogen peroxide to ROS and oxygen.

The authors said that it was challenging to assemble all reagents in one nanocapsule. The chemotherapeutic agent, cisplatin, is poorly soluble in water, while ovalbumin, the nanocapsule protein, does not dissolve in the organic solvent. Using a miniemulsion technique, the scientists eventually combined all three reagents in a solvent mixture and wrapped them up in a shell of ovalbumin. They stabilized and emulsified these nanocapsules by adding a copolymer based on poly(ethylene glycol).

The scientists tested this system on tumor cell lines. The nanocapsules entered the cells, released their loads, and developed ROS when irradiated with red light. The agent set also killed cells that were resistant to cisplatin or had a particularly low oxygen concentration.

The combined encapsulated drugs also stopped tumor growth in live mice. The authors found that the reagents accumulated in the tumor tissue. They also made the tumors shrink over time without affecting healthy tissue or other organs.

The authors highlighted that the anticancer agents were delivered to the tumor in nanocapsules and worked synergistically. Treatments involving only one agent, or a combination of two, were much less effective. The authors proposed that similar synergistic platforms will play a major role in future therapy settings.
-end-
About the Author

Professor Katharina Landfester is a director of the Max Planck Institute for Polymer Research in Mainz, Germany. Her research interest is in the creation of colloids with increasingly specific and complex properties for new materials and biomedical applications. The nanocarrier research group focuses on translating drug nanocarriers into clinically relevant applications with the aim to reduce dosages and increase target specificity.

https://www.mpg.de/424968/polymerforschung_wissM59

Wiley

Related Tumor Cells Articles from Brightsurf:

A more sensitive way to detect circulating tumor cells
Breast cancer is the most frequently diagnosed cancer in women, and metastasis from the breast to other areas of the body is the leading cause of death in these patients.

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

How to prevent the spread of tumor cells via the lymph vessels
Scientists from the German Cancer Research Center and the Mannheim Medical Faculty of the University of Heidelberg identified a new way to block the dangerous spread of tumor cells via lymphatic vessels.

The CNIO reprograms CRISPR system in mice to eliminate tumor cells without affecting healthy cells
CNIO researchers destroyed Ewing's sarcoma and chronic myeloid leukaemia tumor cells by using CRISPR to cut out the fusion genes that cause them.

Feeding off fusion or the immortalization of tumor cells
Despite all recent progress, cancer remains one of the deadliest human diseases.

How do tumor cells divide in the crowd?
Scientists led by Dr. Elisabeth Fischer-Friedrich, group leader at the Excellence Cluster Physics of Life (PoL) and the Biotechnology Center TU Dresden (BIOTEC) studied how cancer cells are able to divide in a crowded tumor tissue and connected it to the hallmark of cancer progression and metastasis, the epithelial-mesenchymal transition (EMT).

How tumor cells evade the immune defense
Scientists are increasingly trying to use the body's own immune system to fight cancer.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

New pathway to attack tumor cells identified
A study led by the Institut de Neurociències (INc-UAB) describes a new strategy to tackle cancer, based on inducing a potent stress in tumor causing cell destruction by autophagy.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Read More: Tumor Cells News and Tumor Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.