Bacterial toxin with healing effect

October 13, 2020

Normally they are among the many harmless organisms found in and on the human body: one in four people have millions of Staphylococcus aureus bacteria on their skin and on the mucous membranes of the upper respiratory tract, without being aware of it. In some cases, however, the harmless bacteria can turn into pathogens, which can lead to skin inflammation and lung infections, or - in the worst cases - sepsis. "This happens especially when the bacteria multiply too fast, for example when a person's immune system is weakened by an infection or injury," says Prof. Oliver Werz of Friedrich Schiller University Jena in Germany.

The Professor for Pharmaceutical Chemistry and his team have studied the molecular defence mechanisms of the human immune system in the fight against such Staphylococcus aureus infections and made a surprising discovery. As the research team reports in the current issue of the specialist journal "Cell Reports", the toxic cocktail with which Staphylococcus aureus damages cells and tissues also has positive effects: specific immune cells are stimulated by the bacterial toxin to produce specialised messenger substances that help to reduce inflammation and to promote tissue healing. Prof. Werz expects this hitherto unknown mechanism to be significant for future treatments of skin inflammation and chronic wounds.

Immune cells produce anti-inflammatory messenger substances

In their latest study, the researchers from the University of Jena, Jena University Hospital and the Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), together with colleagues from Harvard Medical School and the University of Naples, have studied in particular the bacterial toxin "α-Hemolysin" and examined its effect on M2 macrophages. M2 macrophages are immune cells which, in the later stages of an inflammatory reaction, ensure that bacteria that have been killed, and damaged cell components, are removed, and that the tissue regenerates. "They are therefore a kind of cellular waste disposal," says Paul Jordan, doctoral candidate in Werz's team and lead author of the publication, describing the function of these cells.

The researchers showed that α-hemolysin binds to specific receptor proteins on the surface of M2 macrophages and thus triggers the production of anti-inflammatory messenger substances in the cells, which then cause the inflammation to resolve. In the study, the scientists were also able to show that these transmitters promote tissue regeneration in an animal model. The anti-inflammatory messenger substances include resolvins, maresins and protectins that are formed from omega-3 fatty acids.
-end-
The study was conducted as part of the Collaborative Research Centres SFB1127 ChemBioSys and SFB1278 Polytarget at the University of Jena and was funded by the German Research Foundation.

Original publication:

Jordan PM et al. Staphylococcus aureus-derived α-hemolysin evokes generation of specialized pro-resolving mediators promoting inflammation resolution, Cell Reports 33 (2020), https://www.cell.com/cell-reports/fulltext/S2211-1247(20)31236-5

Contact:

Prof. Oliver Werz
Institute of Pharmacy of Friedrich Schiller University Jena
Philosophenweg 14, 07743 Jena, Germany
Tel.: +49 (0)3641 / 949801
E-mail: oliver.werz@uni-jena.de

Friedrich-Schiller-Universitaet Jena

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.