New method uses noise to make spectrometers more accurate

October 13, 2020

Optical spectrometers are instruments with a wide variety of uses. By measuring the intensity of light across different wavelengths, they can be used to image tissues or measure the chemical composition of everything from a distant galaxy to a leaf. Now researchers at the UC Davis Department of Biomedical Engineering have come up a with a new, rapid method for characterizing and calibrating spectrometers, based on how they respond to "noise."

Rendering of prism and spectrum

Optical spectroscopy splits light and measures the intensity of different wavelengths. It is a powerful technique across a wide range of applications. UC Davis engineers Aaron Kho and Vivek Srinivasan have now found a new way to characterize and cross-calibrate spectroscopy instruments using excess "noise" in a light signal. (Getty Images)

Spectral resolution measures how well a spectrometer can distinguish light of different wavelengths. It's also important to be able to calibrate the spectrometer so that different instruments will give reliably consistent results. Current methods for characterizing and calibrating spectrometers are relatively slow and cumbersome. For example, to measure how the spectrometer responds to different wavelengths, you would shine multiple lasers of different wavelengths on it.

Noise is usually seen as being a nuisance that confuses measurements. But graduate student Aaron Kho, working with Vivek Srinivasan, associate professor in biomedical engineering and ophthalmology, realized that the excess noise in broadband, multiwavelength light could also serve a useful purpose and replace all those individual lasers.

"The spectrometer's response to noise can be used to infer the spectrometer's response to a real signal," Srinivasan said. That's because the excess noise gives each channel of the spectrum a unique signature.

Faster, more accurate calibration

Instead of using many single-wavelength lasers to measure the spectrometer's response at each wavelength, the new approach uses only the noise fluctuations that are naturally present in a light source with many wavelengths. In this way, it's possible to assess the spectrometer's performance in just a few seconds. The team also showed that they could use a similar approach to cross-calibrate two different spectrometers.

Kho and Srinivasan used the excess noise method in Optical Coherence Tomography (OCT), a technique for imaging living eye tissue. By increasing the resolution of OCT, they were able to discover a new layer in the mouse retina.

The excess noise technique has similarities to laser speckle, Kho said. Speckle - granular patterns formed when lasers are reflected off surfaces - was originally seen as a nuisance but turns out to be useful in imaging, by providing additional information such as blood flow.

"Similarly, we found that excess noise can be useful too," he said.

These new approaches for characterization and cross-calibration will improve the rigor and reproducibility of data in the many fields that use spectrometers, Srinivasan said, and the insight that excess noise can be useful could lead to the discovery of other applications.
-end-
The work was published Oct. 6 in Light Science & Applications. Additional authors on the paper are Tingwei Zhang, Jun Zhu and Conrad Merkle, all at the UC Davis Department of Biomedical Engineering. The work was supported by the NIH and the Glaucoma Research Foundation.

University of California - Davis

Related Biomedical Engineering Articles from Brightsurf:

Applying machine learning to biomedical science
Dr Pengyi Yang and colleagues from the University of Sydney have brought together the latest developments in applications of machine learning in biomedical science, showing that new techniques are combining ensemble methods with deep learning, with potential applications in cancer research and better understanding viruses.

Hydrogel paves way for biomedical breakthrough
Dubbed the ''invisibility cloak'', engineers at the University of Sydney have developed a hydrogel that allows implants and transplants to better and more safetly interact with surrounding tissue.

Biomedical instrument based on microvesicles
Researchers have proved that a microvesicle-based instrument can be effective in reducing inflammation and immune response.

Biomedical researchers get closer to why eczema happens
A new study from researchers at Binghamton University, State University of New York may help to peel back the layers of unhealthy skin -- at least metaphorically speaking -- and get closer to a cure.

Artificial intelligence improves biomedical imaging
ETH researchers use artificial intelligence to improve quality of images recorded by a relatively new biomedical imaging method.

Transparency and reproducibility of biomedical research is improving
New research publishing Nov. 20 in the open-access journal PLOS Biology from Joshua Wallach, Kevin Boyack, and John Ioannidis suggests that progress has been made in key areas of research transparency and reproducibility.

A pill for delivering biomedical micromotors
Using tiny micromotors to diagnose and treat disease in the human body could soon be a reality.

Accounting for sex differences in biomedical research
When it comes to health, a person's sex can play a role.

Biomedical Engineering hosts national conference on STEM education for underserved students
The University of Akron hosts a national conference aimed at ensuring underserved students have access to opportunities in science, technology, engineering and mathematics (STEM).

Boosting the lifetime and effectiveness of biomedical devices
A research team led by the University of Delaware's David Martin has discovered a new approach to boosting the lifetime and effectiveness of electronic biomedical devices.

Read More: Biomedical Engineering News and Biomedical Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.