Biotech breakthrough in islet cell replacement for type 1 diabetes

October 14, 2004

Northwestern University has received a major grant from the Juvenile Diabetes Research Foundation (JDRF) to advance technologies in the field of islet cell replacement for the treatment of type 1 diabetes.

Principal investigator on the $1.5 million JDRF program project is Dixon B. Kaufman, M.D., professor and vice chair of research in the department of surgery at Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital.

The grant represents a unique multidisciplinary initiative to enhance survival of transplanted islet cells in patients with type 1 diabetes, linking Northwestern University researchers in transplant surgery, endocrinology, materials science and engineering, chemical and biological engineering and chemistry.

The grant will complement other research in Kaufman's National Institutes of Health-funded clinical islet cell transplant program that will serve as the foundation for testing novel sources of insulin-secreting islet calls and new bioactive platforms on which the cells can be delivered. Design and development of these novel bioactive scaffolds will be conducted in collaboration with scientists in the Northwestern University Institute for BioNanotechnology in Medicine.

"We're very pleased to receive this grant from the Juvenile Diabetes Research Foundation because it recognizes the importance of the interdisciplinary and translational research that is being done at Northwestern," said University President Henry S. Bienen. "By collaborating across disciplines, our outstanding faculty researchers are able to make important new discoveries in medical research and translate those into patient care much more quickly."

More than 1.3 million Americans have type 1 diabetes, and each year over 13,000 children are diagnosed with the disease.

In type 1 diabetes, the immune system destroys islet cells, which produce insulin, the hormone that enables the body to use sugar for fuel. The goal of islet cell transplantation is to replace the destroyed islet cells with functioning donor cells.

Although islet cell transplantation has been used successfully to treat certain individuals with type 1 diabetes, its widespread use has been impeded by a shortage of donor organs, inefficient islet engraftment and organ rejection.

"The collective efforts of the investigators in this extraordinary collaborative arrangement will be brought to bear on solving some of the most challenging obstacles impeding widespread application of cell replacement therapy for diabetes," Kaufman said.

"Together, we will hasten the cure of diabetes through the development of novel vehicles for the transplantation of insulin-secreting cells, and of powerful new imaging modalities capable of monitoring cell fate and function," Kaufman said.

Richard Insel, executive vice president of research for JDRF, said: "We are delighted to be supporting the interdisciplinary research program at Northwestern University. Although imperfect, islet transplantation has proven itself as a remarkable pathway for curing type 1 diabetes. As such, we look forward to the program's progress and findings and expect that they will be helpful to our efforts to find a cure."

Specifically, the grant will fund efforts to develop nano- and microscale biomaterials capable of creating a microenvironment favorable for islet survival and function via controlled delivery of biological factors that will accelerate engraftment and control the recipient's immune response.

One of the program's aims is to develop alternative sites for islet implantation, for example, in the abdomen, rather than use the current method of transplanting islet cells into the liver.

The researchers also will focus on developing precise islet cell-survival monitoring techniques, including contrast agents and probes, that will use real-time noninvasive magnetic resonance imaging of islet mass and function. This imaging technique will ultimately be able to be translated into human studies and clinical care.

Collaborating with Kaufman on this JDRF grant are William Lowe, M.D., professor and associate chair for research in the department of medicine; Samuel Stupp, Board of Trustees Professor of Materials Science, Chemistry and Medicine and director of the Institute for BioNanotechnology in Medicine (IBNAM); Thomas J. Meade, professor of chemistry; biochemistry, molecular biology and cell biology; and neurobiology and physiology; as well as Lonnie Shea, assistant professor, chemical and biological engineering, biomedical engineering.
-end-


Northwestern University

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.