When will Mount St Helens erupt?

October 14, 2004

Research reported in Science today (14 October 2004) shows that rocks erupted from the Mount St Helens volcano in 1980 preserve a remarkable record of the goings-on beneath the volcano in the period prior to that eruption.

Professor Jon Blundy and his PhD student Kim Berlo from the Earth Sciences Department at Bristol University demonstrate that monitoring the isotopic content of gases being emitted from the volcano right now might predict whether the next eruption will be so catastrophic, and when it might occur.

The team identified a subterranean reservoir full of magma at around 7 km depth that had been steadily shedding gas for at least five years prior to the eruption. Some of this gas then accumulated in a more shallow and short-lived reservoir around 4 km beneath the volcano. It is the expansion of these gas bubbles as they rise up that ultimately drives volcanic eruptions.

Blundy and his team showed that the magma which erupted explosively in May 1980 came largely from both the deep and shallow reservoirs, while subsequent, more gentle eruptions in 1980 came exclusively from magma trapped at shallow levels. Clearly there is a link between the storage depth of the magma and its eruptive style.

Furthermore, using short-lived radioactive isotopes, they demonstrate that the process of gas transfer from deep to shallow reservoirs must have occurred just weeks before the eruption.

Mount St. Helens recently cleared its throat with a series of small steam and ash eruptions. But it is unclear whether this activity will evolve into a more substantial eruption such as the explosion in 1980 which removed 400 metres off the top of the volcano and spewed ash over an area of more than 56,000 square kilometres.

Professor Blundy said: 'We have shown there is a link between the storage depth of magma and the explosiveness of an eruption. This suggests that monitoring the abundance of short-lived radioactive isotopes above restless volcanoes could be a useful tool for predicting the style of the next eruption. It might also provide clues as to when the next eruption will occur'.
-end-


University of Bristol

Related Volcano Articles from Brightsurf:

Using a volcano's eruption 'memory' to forecast dangerous follow-on explosions
Stromboli, the 'lighthouse of the Mediterranean', is known for its low-energy but persistent explosive eruptions, behaviour that is known scientifically as Strombolian activity.

Rebirth of a volcano
Continued volcanic activity after the collapse of a volcano has not been documented in detail so far.

Optical seismometer survives "hellish" summit of Caribbean volcano
The heights of La Soufrière de Guadeloupe volcano can be hellish, sweltering at more than 48 degrees Celsius (120 degrees Fahrenheit) and swathed in billows of acidic gas.

Researchers reveal largest and hottest shield volcano on Earth
Researchers from the University of Hawai'i at Mānoa revealed the largest and hottest shield volcano on Earth--Pūhāhonu, a volcano within the Papahānaumokuākea Marine National Monument.

Formation of a huge underwater volcano offshore the Comoros
A submarine volcano was formed off the island of Mayotte in the Indian Ocean in 2018.

Volcano F is the origin of the floating stones
Since August a large accumulation of pumice has been drifting in the Southwest Pacific towards Australia.

Researchers discover a new, young volcano in the Pacific
Researchers from Tohoku University have discovered a new petit-spot volcano at the oldest section of the Pacific Plate.

What happens under the Yellowstone Volcano
A recent study by Bernhard Steinberger of the German GeoForschungsZentrum and colleagues in the USA helps to better understand the processes in the Earth's interior beneath the Yellowstone supervolcano.

Geoengineering versus a volcano
Major volcanic eruptions spew ash particles into the atmosphere, which reflect some of the Sun's radiation back into space and cool the planet.

How to recognize where a volcano will erupt
Eleonora Rivalta and her team from the GFZ German Research Centre for Geosciences in Potsdam, together with colleagues from the University Roma Tre and the Vesuvius Observatory of the Italian Istituto Nazionale di Geofisica e Vulcanologia in Naples have devised a new method to forecast volcanic vent locations.

Read More: Volcano News and Volcano Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.