Ancient Chinese folk remedy packs anti-cancer punch

October 14, 2004

A group of promising cancer-fighting compounds derived from a substance used in ancient Chinese medicine will be developed for potential use in humans, the University of Washington announced today.

The UW TechTransfer Office has signed a licensing agreement with Chongqing Holley Holdings, a Chinese company, and Holley Pharmaceuticals, its U.S. subsidiary.

The compounds, all developed through the research of UW scientists Henry Lai and Narendra Singh of the Department of Bioengineering and Tomikazu Sasaki of the Department of Chemistry, make use of a substance known as artemisinin, found in the wormwood plant and used throughout Asia since ancient times to treat malaria.

Although the compounds are promising, potential medical applications are still years away, officials say.

"We are very excited about the UW's discovery and an opportunity to develop an artemisinin-based cancer drug," Kevin Mak, chief scientist at Holley, said. "The technology is very promising, but it's in its early stages. Further research and clinical trials are needed."

The company, located in Chongqing, China, has been in the artemisinin business for more than 30 years, and is a world leader in farming, extracting and manufacturing artemisinin, its derivatives and artemisinin-based anti-malaria drugs, officials say.

Lai said he became interested in artemisinin about 10 years ago. The chemical helps control malaria because it reacts with the high iron concentrations found in the single-cell malaria parasite. When artemisinin comes into contact with iron, a chemical reaction ensues, spawning charged atoms that chemists call "free radicals." The free radicals attack the cell membrane and other molecules, breaking it apart and killing the parasite.

Lai said he began to wonder if the process might work with cancer, too.

"Cancer cells need a lot of iron to replicate DNA when they divide," Lai explained. "As a result, cancer cells have much higher iron concentrations than normal cells. When we began to understand how artemisinin worked, I started wondering if we could use that knowledge to target cancer cells."

Perhaps the most promising of the methods licensed involves the use of transferrin, to which the researchers bind artemisinin at the molecular level. Transferrin is an iron-carrying protein found in blood, and is transported into cells via transferrin receptors on a cell's surface.

Iron-hungry cancer cells typically have significantly more transferrin receptors on their surface than normal cells, which allows them to take in more of the iron-carrying protein. That, according to Lai, is what seems to make the compound so effective.

"We call it a Trojan horse because a cancer cell recognizes transferrin as a natural, harmless protein and picks up the tagged compound without knowing that a bomb - artemisinin - is hidden inside."

Once inside the cancer cell, the iron is released and reacts with the artemisinin. That makes the compound both highly toxic and, because of cancer's rapacious need for iron, highly selective. Surrounding, healthy cells are essentially undamaged.

"Our research in the lab indicated that the artemisinin-tagged transferrin was 34,000 times more effective in selecting and killing the cancer cells than normal cells," Lai said. "Artemisinin alone is 100 times more effective, so we've greatly enhanced the selectivity."
-end-
For more information, contact Lai at 206-543-1071 or hlai@u.washington.edu. The Holley contact is Michael Liu, 714-606-8415 or michael@holleypharma.com.

University of Washington

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.