Study reveals a key to blood vessel growth and possible drug target

October 14, 2007

Researchers have identified a molecular pathway that plays a critical role in the growth of blood vessels. The finding not only offers an important insight into the development of the vascular system during embryonic development but suggests a potential target for inhibiting the blood vessels that fuel cancers, diabetic eye complications and atherosclerosis, the researchers say.

The study, published online on Oct. 14 in "Nature Genetics." was conducted in the zebrafish, the tiny, blue-and-silver striped denizen of India's Ganges River and many an aquarium.

A "News and Views" commentary on the paper will run in the same issue.

"We expect this finding will offer important insights into blood vessel formation in humans," says lead author Massimo Santoro, PhD, UCSF visiting postdoctoral fellow in the lab of senior author Didier Stainier, PhD, UCSF professor of biochemistry and biophysics. "The zebrafish has proven to be an important model for discovering molecules relevant to human disease."

Angiogenesis, or the growth of blood vessels, is active not only during embryonic development but throughout the life of the body, providing a source of oxygenated blood to tissues damaged by wounds.

However, it is also active in a number of disease processes, including cancer. Without a blood supply, tumors cannot grow beyond the size of a small pea. Cancerous tumors release chemical signals into their environment that stimulate healthy blood vessels to sprout new vessels that then extend into the tumors. During the last decade, scientists have identified several molecules that promote angiogenesis. A drug that inhibits these molecules is now commercially available and others are being studied in clinical trials.

Scientists are also exploring strategies for stimulating the growth of new blood vessels in patients whose clogged arteries prevent a sufficient blood supply to the heart muscle.

In the current study, the UCSF team determined that two well known signaling molecules, birc2 and TNF, are crucial to the survival of endothelial cells -- which line the blood vessels and maintain the integrity of the blood vessel wall during vascular development -- in zebrafish embryos.

"The pathway these molecules make up during vascular development has not been looked at before," says Stainier. "It offers a new target for therapeutic strategies."

The birc2 gene belongs to a family of proteins that control the balance between cell survival and cell death (apoptosis). A cell induces apoptosis when it detects that it is irreparably damaged. The integrity of the blood vessel wall is determined by a dynamic balance between endothelial cell survival and apoptosis.

The scientists started the investigation by examining zebrafish with unusual physical characteristics and working to identify the mutated genes that were responsible for the traits.

"We began with a genetic mutant that displayed vascular hemorrhage associated with vascular defects, and soon proved that the mutant had a defective birc2 gene," says Santoro. "Without the birc2 gene, hemorrhage and blood pooling occurred, resulting in vascular regression and cell death."

Next, through a series of genomic analyses and biochemical studies, the team discovered the critical role of birc2 and TNF in blood vessel health in the zebrafish embryo. They showed that birc2 is needed for the formation of the tumor necrosis factor receptor complex 1, a group of proteins and peptides that activate cell survival by initiating signals. Tumor necrosis factor promotes activation of NF-kB, a protein complex transcription factor involved in the transfer of genetic information. Further tests proved the existence of a genetic link between the birc2/NF-kB pathway, and that it is critical for vascular health and endothelial cell survival.

"Studies on vascular development are important so that we can better understand the molecular basis of how endothelial cell-related pathologies such as cancer, diabetic eye complications, known as retinopathies, atherosclerosis and system lupus develop," Santoro said. "It can also help us design new therapeutic strategies for these diseases."

The team hopes that future researchers will investigate other avenues and alternative pathways. "Because vascular health impacts many different diseases, understanding how to genetically control endothelial cell survival and apoptosis is critical to future work in these areas," Stainier said.
-end-
Stainier is a member of the UCSF Institute for Regeneration Medicine, the programs in Genetics and Human Genetics, and the Cardiovascular Research Institute.

Co-authors of the study were Tracy Mitchell, of the UCSF Department of Biophysics and Biochemistry, Programs in Developmental Biology, Genetics and Human Genetics, and Cardiovascular Research Institute; Temesgen Samuel, of the Burnham Institute for Medical Research and John C. Reed of the Burnham Institute.

The study was funded by the National Institutes of Health, American Heart Association, Packard Foundation and Human Frontier Science Program Fellowship.

UCSF is a leading university that advances health worldwide by conducting advanced biomedical research, educating graduate students in the life sciences and health professions, and providing complex patient care.

University of California - San Francisco

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.