NIST mini-sensor traces faint magnetic signature of human heartbeat

October 14, 2010

Researchers from the National Institute of Standards and Technology (NIST) and the German national metrology institute have used NIST's miniature atom-based magnetic sensor to successfully track a human heartbeat, confirming the device's potential for biomedical applications.

Described in Applied Physics Letters,* the study is the first to be performed under conditions resembling a clinical setting with the NIST mini-sensors, which until now have been operated mostly in physics laboratories. The new experiments were carried out at the Physikalisch Technische Bundesanstalt (PTB) in Berlin, Germany, in a building described as having the world's best magnetic shielding--necessary to block the Earth's magnetic field and other external sources from interfering with the high-precision measurements. PTB has an ongoing program in biomagnetic imaging using human subjects.

The NIST sensor--a tiny container of about 100 billion rubidium atoms in gas form, a low-power infrared laser, and optics--measured the heart's magnetic signature in picoteslas (trillionths of a tesla). The tesla is the unit that defines magnetic field strength. For comparison, the Earth's magnetic field is a million times stronger (measured in millionths of a tesla) than a heartbeat, and an MRI machine uses fields several million times stronger still (operating at several tesla).

In the experiments at PTB, the NIST sensor was placed 5 millimeters above the left chest of a person lying face up on a bed. The sensor successfully detected the weak but regular magnetic pattern of the heartbeat. The same signals were recorded using the "gold standard" for magnetic measurements, a SQUID (superconducting quantum interference device). A comparison of the signals confirmed that the NIST mini-sensor correctly measured the heartbeat and identified many typical signal features. The NIST mini-sensor generates more "noise" (interference) in the signal but has the advantage of operating at room temperature, whereas SQUIDs work best at minus 269 degrees Celsius and require more complicated and expensive supporting apparatus.

A spin-off of NIST's miniature atomic clocks, NIST's magnetic mini-sensors were first developed in 2004. Recently, they were packaged with fiber optics for detecting the light signals that register magnetic field strength. (See the 2007 NIST news release "New NIST Mini-Sensor May Have Biomedical and Security Applications" at In addition, the control system has been reduced in size, so the entire apparatus can be transported easily to other laboratories.

The new results suggest that NIST mini-sensors could be used to make magnetocardiograms, a supplement or alternative to electrocardiograms. The study also demonstrated for the first time that atomic magnetometers can offer sensing stability lasting tens of seconds, as needed for an emerging technique called magnetorelaxometry (MRX), which measures the magnetization decay of magnetic nanoparticles. MRX is used to localize, quantify and image magnetic nanoparticles inserted into biological tissue for medical applications such as targeted drug treatments. Further tests of the NIST sensors at PTB are planned.
* S. Knappe, T.H. Sander, O. Kosch, F. Wiekhorst, J. Kitching and L. Trahms. Cross-validation of microfabricated atomic magnetometers with SQUIDs for biomagnetic applications. Applied Physics Letters. 97, 133703 (2010); doi:10.1063/1.3491548. Online publication: Sept. 28, 2010.

National Institute of Standards and Technology (NIST)

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to