Hydraulic fracturing linked to earthquakes in Ohio

October 14, 2014

SAN FRANCISCO -- Hydraulic fracturing triggered a series of small earthquakes in 2013 on a previously unmapped fault in Harrison County, Ohio, according to a study published in the journal Seismological Research Letters (SRL).

Nearly 400 small earthquakes occurred between Oct. 1 and Dec. 13, 2013, including 10 "positive" magnitude earthquake, none of which were reported felt by the public. The 10 positive magnitude earthquakes, which ranged from magnitude 1.7 to 2.2, occurred between Oct. 2 and 19, coinciding with hydraulic fracturing operations at nearby wells.

This series of earthquakes is the first known instance of seismicity in the area.

Hydraulic fracturing, or fracking, is a method for extracting gas and oil from shale rock by injecting a high-pressure water mixture directed at the rock to release the gas inside. The process of hydraulic fracturing involves injecting water, sand and chemicals into the rock under high pressure to create cracks. The process of cracking rocks results in micro-earthquakes. Hydraulic fracturing usually creates only small earthquakes, ones that have magnitude in the range of negative 3 (−3) to negative 1 (-1).

"Hydraulic fracturing has the potential to trigger earthquakes, and in this case, small ones that could not be felt, however the earthquakes were three orders of magnitude larger than normally expected," said Paul Friberg, a seismologist with Instrumental Software Technologies, Inc. (ISTI) and a co-author of the study.

The earthquakes revealed an east-west trending fault that lies in the basement formation at approximately two miles deep and directly below the three horizontal gas wells. The EarthScope Transportable Array Network Facility identified the first earthquakes on Oct. 2, 2013, locating them south of Clendening Lake near the town of Uhrichsville, Ohio. A subsequent analysis identified 190 earthquakes during a 39-hour period on Oct. 1 and 2, just hours after hydraulic fracturing began on one of the wells.

The micro-seismicity varied, corresponding with the fracturing activity at the wells. The timing of the earthquakes, along with their tight linear clustering and similar waveform signals, suggest a unique source for the cause of the earthquakes -- the hydraulic fracturing operation. The fracturing likely triggered slip on a pre-existing fault, though one that is located below the formation expected to confine the fracturing, according to the authors.

"As hydraulic fracturing operations explore new regions, more seismic monitoring will be needed since many faults remain unmapped." Friberg co-authored the paper with Ilya Dricker, also with ISTI, and Glenda Besana-Ostman originally with Ohio Department of Natural Resources, and now with the Bureau of Reclamation at the U.S. Department of Interior.
-end-
The study, "Characterization of an earthquake sequence triggered by hydraulic fracturing in Harrison County Ohio," will be online Oct. 15 and in the November print edition of SRL.

Seismological Society of America

Related Earthquakes Articles from Brightsurf:

AI detects hidden earthquakes
Tiny movements in Earth's outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes.

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.

Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.

How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.

Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.

Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.

Read More: Earthquakes News and Earthquakes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.