Chesapeake Bay surface water temperature is increasing over time

October 14, 2015

FROSTSBURG, MD (October 14, 2015)--A new study shows that surface water temperature in the Chesapeake Bay is increasing more rapidly than air temperature, signaling a need to look at the impact of warming waters on one of the largest and most productive estuaries in the world. The study, completed by Haiyong Ding and Andrew Elmore of the University of Maryland Center for Environmental Science's Appalachian Laboratory, was published in the October issue of Remote Sensing of Environment.

"I was surprised that the pattern of increasing water temperature was so clear," said study co-author Andrew Elmore. "If you take any group of five years, they are generally warmer than the previous five years. A consistent warming trend happening over a really large portion of the Bay."

Trends of increasing water temperature were found for more than 92% of the Chesapeake Bay. Water temperature has been increasing more rapidly than air temperature in some areas, particularly in the main stem of the Bay and in the Potomac estuary. The Patapsco River in Baltimore showed the fastest warming of any area of the Bay, implicating urbanization of the watershed and use of the Bay's waters to cool power plants along its shore.

Water temperature is one of the most important factors in understanding the functioning of an aquatic ecosystem. It signals spawning time for fish and warmer water holds less dissolved oxygen than colder water, thereby making estuarine ecosystems experiencing eutrophication or algal blooms more susceptible to dead zones. Many aspects of estuarine management and restoration are dependent on good temperature data.

While warming water temperature in the Bay is not a novel finding, the study used satellite remote sensing data to map a 30-year average minimum and maximum temperatures across the Bay north of the Potomac River. For decades, measurements have been taken from piers, stationary buoys and mobile platforms, which is expensive and time consuming to deploy over large bodies of water.

Elmore and his research team used data from satellites that orbit the earth taking a picture of the Chesapeake Bay every 16 days. Because water emits electromagnetic radiation characteristic of its temperature, each satellite image can be converted to a map of water surface temperature. By analyzing images in consecutive 5-year groups, the researchers were able to separate seasonal variation from long-term trends.

Increasing water temperatures can be driven by climate change, coastal urbanization (since 1975, urban land cover has increased by more than 100% in portions of the coastal plain adjacent to the Bay), runoff from impervious surfaces (imagine the stormwater during a hot afternoon thunderstorm running into a stream at bath-water temperatures), and discharges from industrial processes, such as power plants that use water from the Bay and its tributaries for cooling.

The study compared annual average water surface temperatures for the past 30 years against air temperature records. Increasing trends in air and water temperature were found at all of the stations studied, with rates generally ranging between 0.5 and 1 degree C every ten years.
-end-
"Spatio-temporal patterns in water surface temperature from Landsat time series data in the Chesapeake Bay, U.S.A.," by Haiyong Ding of Nanjing University of Information Science and Technology and Andrew Elmore of the University of Maryland Center for Environmental Science was published in the October issues of Remote Sensing of Environment.

UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL SCIENCE

The University of Maryland Center for Environmental Science (UMCES) celebrates 90 years of leading the way toward better management of Maryland's natural resources and the protection and restoration of the Chesapeake Bay. UMCES scientists work to provide sound advice to help state and national leaders manage the environment and prepare future scientists to meet the global challenges of the 21st century. From the mountains to the sea, our five research centers include the Appalachian Laboratory in Frostburg, the Chesapeake Biological Laboratory in Solomons, the Horn Point Laboratory in Cambridge, the Institute of Marine and Environmental Technology in Baltimore, and the Maryland Sea Grant College in College Park. http://www.umces.edu

University of Maryland Center for Environmental Science

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.