Nav: Home

New evidence for California Condors' genetic bottleneck

October 14, 2016

The existing genetic diversity of California Condors, all of which are descended from just 14 individuals, is strikingly low. But were condors more genetically diverse before their 20th century population crash, or were they already, as one paleontologist put it in the 1940s, a Pleistocene relict with "one wing in the grave"? The researchers behind a new study in The Condor: Ornithological Applications analyzed samples from condor museum specimens dating back to the 1820s and found that the historical population was surprisingly diverse, but that a substantial amount of that diversity was lost in the last two centuries. This finding supports the hypothesis that condors were fairly widespread and abundant prior to increases in human-caused mortality, which likely drove their numbers down quickly in the 1800s and early 1900s.

Analyzing the museum specimens' mitochondrial DNA, Jesse D'Elia of the U.S. Fish and Wildlife Service and his colleagues showed that more than 80% of the unique haplotypes present in the birds of the past have disappeared from the gene pool of condors alive today. The low amount of genetic diversity in the current population, which is descended from only 14 genetic founders from the captive flock, was already well known, but this was the first study to show that there was substantial genetic diversity in the historical population.

D'Elia and his colleagues used tissue samples from 93 California Condor specimens collected between 1825 and 1984 in locations ranging from Mexico to Washington state. "The value of museum collections for answering important questions when considering population translocations and species' reintroductions cannot be overstated," says D'Elia. "They provide a direct window into a population's history and as new genetic and genomic tools continue to be developed the value of these specimens only increases."

The genetic bottleneck resulted in inbreeding and decreased fitness, and condors will continue to require intensive management for some time to recover. But there is a possible upside for condor conservation in the results of this study--D'Elia and his colleagues did not find any evidence that the now-vanished Pacific Northwest population was genetically isolated from the condors in California. If Northwest condors weren't on a separate evolutionary track, there's no reason not to release today's captive-bred condors into those unoccupied areas of their historical range.

"These results document a significant decline in mitochondrial DNA diversity over the past century, which also suggests a corresponding reduction in nuclear DNA diversity," according to Jeff Johnson of the University of North Texas, an expert on incorporating genetic information into conservation efforts. "Therefore, the careful attention made to maintain founder lineages and prevent inbreeding is critical for improving the likelihood of producing an eventual self-sustainable wild population. Those involved in the California Condor recovery efforts are leading experts in captive propagation and release, and the methods developed and used, particularly those benefiting from whole nuclear genome approaches, acknowledge the importance of maintaining existing genomic diversity both at the individual and population level. These methods will also benefit other endangered species captive breeding programs that possess similar demographic histories."
"Ancient DNA reveals substantial genetic diversity in the California Condor (Gymnogyps californianus) prior to a population bottleneck" is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology published by the American Ornithological Society. It began in 1899 as the journal of the Cooper Ornithological Club, a group of ornithologists in California that became the Cooper Ornithological Society.

Central Ornithology Publication Office

Related Genetic Diversity Articles:

Raising a glass to grapes' surprising genetic diversity
Here's a discovery well worth toasting: A research team led by Professor Brandon Gaut with the University of California, Irvine and Professor Dario Cantu with the University of California, Davis has deciphered the genome of the Chardonnay grape.
Genetic diversity couldn't save Darwin's finches
Researchers at the University of Cincinnati found that Charles Darwin's famous finches defy what has long been considered a key to evolutionary success: genetic diversity.
Human genetic diversity of South America reveals complex history of Amazonia
The vast cultural and linguistic diversity of Latin American countries is still far from being fully represented by genetic surveys.
Vampire algae killer's genetic diversity poses threat to biofuels
New DNA analysis has revealed surprising genetic diversity in a bacterium that poses a persistent threat to the algae biofuels industry.
Global data resource shows genetic diversity of chickens
A total of 174 chicken breeds are described in a publicly accessible database which scientists from the University of Göttingen and the Friedrich Loeffler Institute in Neustadt-Mariensee have built up in recent years with numerous international partners.
More Genetic Diversity News and Genetic Diversity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...