Researchers identify the mechanism behind bone marrow failure in Fanconi anaemia

October 14, 2020

Fanconi anaemia (FA) is a genetic disease affecting small children characterized by bone-marrow failure, developmental abnormalities and predisposition to multiple forms of cancer. The molecular mechanisms behind FA are inherited mutations in genes encoding for DNA repair proteins, leading to irreversible bone marrow failure. The exact mechanisms how these genetic mutations lead to the exhaustion of stem cells from the bone marrow has been unknown.

Now, the researchers have identified a cause for this failure. The findings were published in the distinguished Cell Stem Cell journal.

"The results open new paths for developing novel therapies for the disease, for which the only curative treatment currently available is stem cell transplantation. Understanding the mechanism of bone marrow failure better can help to plan stem cell transplantations and to develop new therapies for milder forms of Fanconi anaemia," says Anniina Färkkilä, docent and clinical researcher at the University of Helsinki.

Expression of the MYC gene resulted in permanent bone marrow failure

In the study, researchers at the University of Helsinki analysed the gene expression of individual cells, and found, to their surprise, overexpression of the MYC gene in the bone marrow stem cells of patients with Fanconi anaemia. MYC is one of the best-known genes regulating the formation of malignant tumours.

Functional experiments demonstrated that MYC overexpression resulted in the division of stem cells and their detachment from the bone marrow.

"The overexpression of the MYC gene was caused by inflammation mediators, and it led to an abnormal presence of stem cells in the circulation of patients suffering from Fanconi anaemia. In mouse experiments, a MYC inhibitor reduced stem cell detachment, but at the same time it also reduced cell proliferation," Färkkilä notes.

This suggested that MYC, upregulated in the stem cells due to the inflammatory stress signals, was required for the survival of the stem cells, but as a side effect led to the detachment from the bone marrow niche, and the development of bone marrow failure in FA patients.

Identifying the mechanism associated with bone marrow failure helps to develop biomarkers also for premalignant states in patients with Fanconi anaemia.

"The DNA repair genes defective in FA often result in the development of a number of cancers, which also makes the findings potentially significant in relation to other cancer types, such as ovarian cancer," Färkkilä says.

University of Helsinki

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to