Assessing state of the art in AI for brain disease treatment

October 14, 2020

WASHINGTON, October 14, 2020 -- Artificial intelligence is lauded for its ability to solve problems humans cannot, thanks to novel computing architectures that process large amounts of complex data quickly. As a result, AI methods, such as machine learning, computer vision, and neural networks, are applied to some of the most difficult problems in science and society.

One tough problem is the diagnosis, surgical treatment, and monitoring of brain diseases. The range of AI technologies available for dealing with brain disease is growing fast, and exciting new methods are being applied to brain problems as computer scientists gain a deeper understanding of the capabilities of advanced algorithms.

In a paper published this week in APL Bioengineering, by AIP Publishing, Italian researchers conducted a systematic literature review to understand the state of the art in the use of AI for brain disease. Their search yielded 2,696 results, and they narrowed their focus to the top 154 most cited papers and took a closer look.

Their qualitative review sheds light on the most interesting corners of AI development. For example, a generative adversarial network was used to synthetically create an aged brain in order to see how disease advances over time.

"The use of artificial intelligence techniques is gradually bringing efficient theoretical solutions to a large number of real-world clinical problems related to the brain," author Alice Segato said. "Especially in recent years, thanks to the accumulation of relevant data and the development of increasingly effective algorithms, it has been possible to significantly increase the understanding of complex brain mechanisms."

The authors' analysis covers eight paradigms of brain care, examining AI methods used to process information about structure and connectivity characteristics of the brain and in assessing surgical candidacy, identifying problem areas, predicting disease trajectory, and for intraoperative assistance. Image data used to study brain disease, including 3D data, such as magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, and computed tomography imaging, can be analyzed using computer vision AI techniques.

But the authors urge caution, noting the importance of "explainable algorithms" with paths to solutions that are clearly delineated, not a "black box" -- the term for AI that reaches an accurate solution but relies on inner workings that are little understood or invisible.

"If humans are to accept algorithmic prescriptions or diagnosis, they need to trust them," Segato said. "Researchers' efforts are leading to the creation of increasingly sophisticated and interpretable algorithms, which could favor a more intensive use of 'intelligent' technologies in practical clinical contexts."
-end-
The article, "Artificial intelligence for brain diseases: A systematic review," is authored by Alice Segato, Aldo Marzullo, Francesco Calimeri, and Elena De Momi. The article can be accessed at https://aip.scitation.org/doi/10.1063/5.0011697.

ABOUT THE JOURNAL/



APL Bioengineering is an open access journal publishing significant discoveries specific to the understanding and advancement of physics and engineering of biological systems. See http://aip.scitation.org/journal/apb.

American Institute of Physics

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.