Research demonstrates microbiome transmissibility in perennial ryegrass

October 14, 2020

Scientist Ian Tannenbaum has spent most of his career working in clinical microbiology but was excited to transition to agricultural microbiology when he was offered a chance to conduct the first assessment of the perennial ryegrass microbiome and how it changes during plant maturation and seed production.

"The concepts of the project were very interesting to me and unlike anything I'd previously worked on," said Tannenbaum, who is affiliated with the Centre for AgriBioscience and La Trobe University in Victoria, Australia. "This was my first series of experiments aimed at understanding the natural bacterial assembly of a plant microbiome."

Tannenbaum's most surprising discovery? Finding a stable bacterial microbiome within surface-sterilized ryegrass seeds that almost disappears when the plant matures but returns in a new generation of seed.

"Our findings suggest that a portion of microbiome recruited by the parent plant was inherited by the following generation of seed, which demonstrates microbiome transmissibility," Tannenbaum explained. "The microbiome of the mature plant can be used as a snapshot of the following seed generations."

Working alongside a team of researchers, Tannenbaum found that the microbiome within perennial ryegrass seeds was predominantly comprised of a class of bacteria known as Gammaproteobacteria. In germinated seeds, the bacterial population was influenced by the presence of a resident fungal endophyte, which appeared to impact the abundance of some bacteria strongly enough to result in different seed microbiome between those with the fungal endophyte and those without.

They also compared the impact of soil by studying plants grown in potting mix and a sand/vermiculite mixture. Both soil types were strong determiners of the mature plant microbiomes. Many bacterial species were shared between the two soil types but differed greatly in their relative abundance.

Finally, the team assessed the microbiome of the following generation of seed generated from the plants grown in either mixture. The microbiome profile of the new seed was more reflective of the seed microbiome of the parent. However, additional classes were observed and determined to have been recruited from the growth environment by the parent plant and transmitted to the seed.
For more information about this research, read "Profiling the Lolium perenne Microbiome: From Seed to Seed" published in the August issue of Phytobiomes Journal.

American Phytopathological Society

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to