COVID-19 rapid test has successful lab results, research moves to next stages

October 14, 2020

RENO, Nev. - Rapid detection of the SARS-CoV-2 virus, in about 30 seconds following the test, has had successful preliminary results in Mano Misra's lab at the University of Nevada, Reno. The test uses a nanotube-based electrochemical biosensor, a similar technology that Misra has used in the past for detecting tuberculosis and colorectal cancer as well as detection of biomarkers for food safety.

Professor Misra, in the University's College of Engineering Chemical and Materials Department, has been working on nano-sensors for 10 years. He has expertise in detecting a specific biomarker in tuberculosis patients' breath using a metal functionalized nano sensor.

"I thought that similar technology can be used to detect the SARS-CoV-2 virus, which is a folded protein," Misra said. "This is Point of Care testing to assess the exposure to COVID-19. We do not need a laboratory setting or trained health care workers to administer the test. Electrochemical biosensors are advantageous for sensing purposes as they are sensitive, accurate and simple."

The test does not require a blood sample, it is run using a nasal swab or even exhaled breath, which has biomarkers of COVID-19. Misra and his team have successfully demonstrated a simple, inexpensive, rapid and non-invasive diagnostic platform that has the potential to effectively detect the SARS-CoV-2 virus.

The team includes Associate Professor Subhash Verma, virologist, and Research Scientist Timsy Uppal at the University's School of Medicine, and Misra's post-doctoral researcher Bhaskar Vadlamani.

"Our role on this project is to provide viral material to be used for detection by the nanomaterial sensor developed by Mano," Verma said. "Mano contacted me back in April or May and asked whether we can collaborate to develop a test to detect SARS-CoV-2 infection by analyzing patients' breath. That's where we came in, to provide biological material and started with providing the surface protein of the virus, which can be used for detecting the presence of the virus."

Verma, an expert on SARS-CoV-2, synthesized and prepared the antigenic protein of COVID-19 virus in his laboratory, SARS-CoV-2 receptor binding domain protein, for the preliminary testing and determining the sensitivity of our nano sensor. Synthesizing and purification of viral proteins is usual and routine work in a virology laboratory.

"Our lab is a virology laboratory, which works on different viruses, and we have been working on SARS-CoV-2 from the beginning of the outbreak," he said. "Our genomics and diagnostic group have been sequencing the SARS-CoV-2 from the nasal swabs of COVID-19 patients of the state of Nevada to determine mutational changes in the virus while SARS-CoV-2 circulates in our population."

The team developed co-metal functionalized nanotubes as a sensing material for electrochemical detection of the protein. They confirmed the biosensor's potential for clinical application by directly analyzing the RBD of the Spike glycoprotein on the sensor.

The team plans to move to the next step of sensor validation on the actual COVID-19 patients swabs stored in the Viral Transport Medium and have applied for funding to develop a specific and inexpensive point-of-care sensor for a rapid detection of COVID-19 virus in saliva or breath of infected individuals.

The developed approach also has the potential for diagnosis of other respiratory viral diseases by identifying appropriate metallic elements to functionalize nanotubes.
-end-
The team's article "Functionalized TiO2 nanotube-based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2" has been accepted for publication in the biosensors section of the MDPI publication 'Sensors' and is available as a preprint at MedRxiv.

University of Nevada, Reno

Related Colorectal Cancer Articles from Brightsurf:

Colorectal cancer treatment: the winning combinations
Chemotherapy has distressing side effects for patients and increases the risk of developing resistance to the treatment.

A new model to predict survival in colorectal cancer
This signature could be useful in clinical practice, especially for colorectal cancer diagnosis and therapy.

Roadmap to reducing colorectal cancer deaths
The American Gastroenterological Association has outlined a strategy to increase the number of people screened via tests that are more convenient, accurate and less expensive and tailored to people's individual cancer risks.

Study provides new insight on colorectal cancer growth
A new study by researchers at the University of Kentucky identifies a novel function of the enzyme spermine synthase to facilitate colorectal cancer growth.

Researchers ID target for colorectal cancer immunotherapy
Researchers at the Indiana University Melvin and Bren Simon Comprehensive Cancer Center have identified a target for colorectal cancer immunotherapy.

Colorectal cancer partner-in-crime identified
A protein that helps colorectal cancer cells spread to other parts of the body could be an effective treatment target.

Cancer cell reversion may offer a new approach to colorectal cancer treatment
A novel approach to reverse the progression of healthy cells to malignant ones may offer a more effective way to eradicate colorectal cancer cells with far fewer side effects, according to a KAIST research team based in South Korea.

A novel pathway to target colorectal cancer
Survival rates for patients with late-stage colorectal cancer are dismal, and new therapeutic strategies are needed to improve outcomes.

Colorectal cancer rates in Canada
The incidence of colorectal cancer among younger adults increased in recent years in this analysis of data from Canadian national cancer registries that included about 688,000 new colorectal cancers diagnosed over more than 40 years.

Cancer drugs promote stem cell properties of colorectal cancer
Scientists from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the Mannheim University Medical Center have now discovered that a certain group of cancer drugs (MEK Inhibitors) activates the cancer-promoting Wnt signalling pathway in colorectal cancer cells.

Read More: Colorectal Cancer News and Colorectal Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.