Nav: Home

Reviving cells after a heart attack

October 14, 2020

Extracellular vesicles (EVs) -- nanometer sized messengers that travel between cells to deliver cues and cargo -- are promising tools for the next generation of therapies for everything from autoimmune and neurodegenerative diseases to cancer and tissue injury. EVs derived from stem cells have already been shown to help heart cells recover after a heart attack, but exactly how they help and whether the beneficial effect is specific to EVs derived from stem cells has remained a mystery.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have unraveled potential mechanisms behind the healing power of EVs and demonstrated their capacity to not only revive cells after a heart attack but keep cells functioning while deprived of oxygen during a heart attack. The researchers demonstrated this functionality in human tissue using a heart-on-a-chip with embedded sensors that continuously tracked the contractions of the tissue.

The team also demonstrated that these intercellular travelers could be derived from endothelial cells, which line the surface of blood vessels and are more abundant and easier to maintain than stem cells.

The research is published in Science Translational Medicine.

"Our organ-on-chip technology has progressed to the point where we can now fight drug targets instead of fighting the chip design," said Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at SEAS and senior author of the study. "With this study, we have mimicked a human disease on a chip with human cells and developed a novel therapeutic approach to treat it."

Heart attacks, or myocardial infarctions, occur when blood flow to the heart is blocked. Of course, the best way to treat a heart attack is to restore blood flow but that process actually may cause more damage to the cells in the heart. So-called ischemia-reperfusion injury (IRI) or reoxygenation injury, happens when blood supply returns to tissue after a period of lack of oxygen.

"The cellular response to IRI involves multiple mechanisms, such as calcium and proton overload, oxidative stress, mitochondrial dysfunction and more," said Moran Yadid, a postdoctoral fellow at SEAS and The Wyss Institute for Biologically Inspired Engineering and first author of the paper. "This complex set of processes poses a challenge for the development of effective therapies that can address each of these problems."

That's where the endothelial-derived EVs (EEVs) come in. Because these vesicles are derived from vascular tissue, which is uniquely tuned to sense hypoxic stress, the researchers hypothesized that the cargo they carry could provide direct protection to cardiac muscle.

The researchers mapped the entire set of EEV proteins that are, or can be, expressed by the vesicles.

"Surprisingly, even though these vesicles are only a hundred and fifty nanometers in diameter, they contain almost 2,000 different proteins," said Yadid. "A lot of these proteins relate to metabolic processes like respiration, mitochondrial function, signaling and homeostasis. In other words, a lot of processes that relate to the cardiac response to stress. So, rather than one molecule that is therapeutic, we think that the exosomes contain a cocktail of molecules and proteins that can, all together, help the cell maintain homeostasis, deal with the stress, modify metabolic action and reduce the amount of injury."

The team tested the effect of EEVs on human heart tissue using the heart-on-a-chip model developed by the Disease Biophysics Group at SEAS. Organ-on-chip platforms mimic the structure and function of native tissue and allow researchers to observe, in real time, the effects of injuries and treatments in human tissue. Here, the researchers simulated a myocardial infarction and reoxygenation on chips that were infused with EEVs and those that were not.

The researchers found that in tissues treated with EEVs, the cardiomyocytes could better adapt to stress conditions and sustain a higher workload. The researchers induced injury by three hours of oxygen restrictions followed by 90 minutes of reoxygenation and then measured the fraction of dead cells and the contractile force of the tissue. The heart tissue treated with EEVs had half as many dead cells and had a contractile force four times higher than the untreated tissue after injury.

The team also found that injured cardiomyocytes that had been treated with EEVs exhibited a set of proteins that was more similar to the uninjured ones compared with untreated cells. Surprisingly, the team also observed that cells treated with EEVs continued to contract even without oxygen.

"Our findings indicate that EEVs could protect cardiac tissue from reoxygenation injury in part by supplementing the injured cells with proteins and signaling molecules that support different metabolic processes, paving the way for new therapeutic approaches," said André G. Kléber, a Visiting Professor of Pathology at Harvard Medical School and co-author of the study.

"Exosomal cell therapies might be beneficial when the traditional model of one molecule, one target just won't cure the disease," said Parker. "With the vesicles we administered, we believe we are taking a shotgun approach to hitting a network of drug targets. With our organ on chip platform, we will be poised to use synthetic exosomes in therapeutic manner that may be more efficient and amenable to more reliable manufacturing."
-end-
The research was co-authored by Johan U. Lind, former postdoctoral fellow at SEAS and current Assistant Professor at the University of Copenhagen, Denmark; Herdeline Ann M. Ardoña, former postdoctoral fellow at SEAS and current Assistant Professor at the University of California Irvine; Sean P. Sheehy, Lauren E. Dickinson, Feyisayo Eweje, Maartje M.C. Bastings, Benjamin Pope, Blakely B. O'Connor, Juerg R. Straubhaar and Bogdan Budnik.

It was supported by Harvard Materials Research Science and Engineering Center and the National Science Foundation under grant DMR-1420570, and the National Center for Advancing Translational Sciences of the NIH under award numbers UH3TR000522 and 1-UG3-HL-141798-01.

Harvard John A. Paulson School of Engineering and Applied Sciences

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.