Now you see it, now you don't: Hidden colors discovered by coincidence

October 14, 2020

Scientists in Australia have stumbled across an unusual way to observe colour that had previously gone unnoticed.

To create the effect, researchers attached a very thin film of one material to another, larger sample. The electric field (an invisible force created by the attraction and repulsion of electrical charges) is very strong where the two materials are connected.

When combined with 'optical interference' (the interaction of different waves of light), a scattering process occurs from the surface of the material, creating bright colours when viewed under different lighting conditions.

The findings, which have been published in the journal Advanced Optical Materials, have expanded our understanding of the behaviour and properties of light, and could also have practical applications in sensing technology and security devices.

Most materials in the world around us appear a certain colour because they only absorb part of solar spectrum. For example, leaves on a tree look green to us because they absorb red and blue light.

However, some objects, animals and materials create colour a different way, because of the properties they contain. These are known as structural colours.

Structural colours are usually created by diffraction, which happens when rays of light interfere with each other as they reflect off surfaces. Rainbows and colourful oil slicks on top of water are examples of structural colour, and the effect is also responsible for the amazing vivid hues of peacock feathers and butterfly wings.

While those phenomena are well established, an unexpected new mechanism for creating similar effects has been uncovered.

The effect is an example of structural colour forming because of frequency-selective scattering of light, in which the strength of the electric field and the type of material used is a key factor.

Dr Eser Akinoglu of the ARC Centre of Excellence in Exciton Science was using a light microscope to observe gold nanoparticles when he unexpectedly noticed that the entire sample was creating a vivid colour visible to the naked eye from all directions.

Eser asked for help from colleagues at The University of Melbourne, CSIRO, South China Normal University and the University of Bayreuth to explain the mystery.

To understand it properly, they created thin films which could scatter light and at the same time create diffraction or interference. The system was made using silicon nitride coatings on larger metallic aluminium samples.

Different colours were visible by changing the lighting conditions. Under normal light, the samples looked like a mirror, reflecting back almost all visible light. But turning the overhead lights off and using only one beam of light to illuminate the sample produces vivid, iridescent colours.

Explaining how to easily observe this phenomenon, Eser said: "If you use a flashlight, while in a dark room, to illuminate the sample, the reflected light beam travels away from you to the other side of the room.

"The reflected light never reaches your eyes, only the scattered light can reach your eyes. Whereas when the room light is on, light comes from everywhere on to the sample and therefore you will always see reflected light travelling into your eyes.

"The effect is a previously completely unrecognized curiosity that results in us seeing colour. It's fundamentally something different."
-end-


ARC Centre of Excellence in Exciton Science

Related Electric Field Articles from Brightsurf:

Charging electric cars up to 90% in 6 minutes
POSTECH Professor Byoungwoo Kang's research team uncovers a new Li-ion battery electrode material that can achieve high-energy density and high power capability per volume without reducing particle size.

uOttawa researchers find cheaper, faster way to measure the electric field of light
Researchers at the University of Ottawa have created a new method to measure the temporal evolution of electric fields with optical frequencies.

How dangerous are burning electric cars?
What happens if an electric car burns in a road tunnel or an underground car park?

One more hit from rare Earth: Efficient coherent spin manipulation by the electric field
Researchers used rare earth ions to efficiently couple the electric and magnetic behaviors of material.

Battery breakthrough gives boost to electric flight and long-range electric cars
Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with Carnegie Mellon University, have developed a new battery material that could enable long-range electric vehicles that can drive for hundreds of miles on a single charge, and electric planes called eVTOLs for fast, environmentally friendly commutes.

Deterministic reversal of single magnetic vortex circulation by an electric field
Chinese researchers discover a deterministic reversal of magnetic vortex circulation in a Ni79Fe21 (NiFe) island on top of a layered-perovskite Bi2WO6 (BWO) thin film using an electric field.

4D electric circuit network with topology
Researchers from China and Germany have proposed a design scheme to implement a four-dimensional topological insulating state in circuit network, which provides a convenient physical platform for studying high-dimensional states.

How we might recharge an electric car as it drives
Stanford engineers demonstrate a technology that could one day be scaled up to power a car moving down the road.

Electric cars better for climate in 95% of the world
Fears that electric cars could actually increase carbon emissions are unfounded in almost all parts of the world, news research shows.

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment
Nanoscale texturing, drilling, cutting and spatial sculpturing require not only high accuracy, but also the capability of manufacturing in the atmospheric environment.

Read More: Electric Field News and Electric Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.