Turning excess noise into signal

October 14, 2020

During the early 1800s, the first spectrometer was developed by spreading different colors of sunlight onto a screen. It was later noticed that certain dark bands in the solar spectrum, known as Fraunhofer lines, are associated with chemical elements in the solar atmosphere. Since then, scientists have applied spectroscopy to many different fields including astronomy, medicine, agriculture, chemistry, and security.

Typically composed of a diffractive element (such as a prism), a focusing element (such as a lens), and a detector, spectrometers measure emitted light intensity on a wavelength-by-wavelength basis to retrieve information about an object of interest. In a common design, the detector is a camera with pixels that measure different parts of the spectrum at the same time. Ideally, the ability to distinguish fine wavelength features, known as the spectral resolution, needs to be optimized. However, current approaches to characterize spectral resolution thoroughly require expensive additional components or intensive manual labor.

In a new paper published in Light: Science & Application, a team of scientists, led by Aaron Kho from the Department of Biomedical Engineering, University of California Davis, United States, have developed a simple method to comprehensively assess spectrometer performance within seconds using only incoherent excess noise, i.e. fluctuations of light in excess of fundamental shot noise.

"This application of excess noise was originally inspired by speckle. Also initially viewed as a nuisance after the invention of the laser, speckle was later discovered to be useful for measuring blood flow, particle size, and the diffraction limit. Similarly, we found that excess noise can be useful too," Mr. Kho said.

Here, Kho and colleagues propose that incoherent excess noise instills broadband light with high-resolution spectral encoding. With this insight, they devise and demonstrate an excess noise approach for rapidly characterizing the spectral resolution of broadband spectrometers. They also demonstrate a related, excess noise approach that is applied to two different spectrometers to create a precise one-to-one mapping between pixels that detect the same wavelength. The scientists call this procedure cross-calibration. Remarkably, both approaches are actually strengthened by incoherent excess noise, which degrades performance in most other photonics applications.

A major biomedical application of spectrometers is spectral domain Optical Coherence Tomography (OCT), an imaging modality where the spectrometer measures an interference pattern to produce fine depth-resolved retinal images of living subjects. To date, spectrometer performance has limited the development of OCT at visible wavelengths. The authors demonstrate the utility of their excess noise characterization approach by employing it to provide feedback during visible light OCT spectrometer alignment. Achieving improved spectral resolution uniformity across a broad wavelength range, they demonstrate high quality visible light OCT imaging of the human and mouse retinas. The improved uniformity of depth resolution and sensitivity help to reveal a new band in the mouse photoreceptor layer.

"The proposed characterization and cross-calibration approaches will improve the rigor and reproducibility of data in the many fields that use spectrometers. The approaches seem to work with both superluminescent diodes and some supercontinuum light sources, which are widespread," said Vivek J. Srinivasan, Associate Professor of Biomedical Engineering at University of California Davis and senior author on the study.

He continued to forecast: "The idea that the spectral encoding provided by excess noise can serve a useful purpose is also important. This insight could aid in the discovery of other applications where excess noise is similarly useful."

Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

Related Biomedical Engineering Articles from Brightsurf:

Applying machine learning to biomedical science
Dr Pengyi Yang and colleagues from the University of Sydney have brought together the latest developments in applications of machine learning in biomedical science, showing that new techniques are combining ensemble methods with deep learning, with potential applications in cancer research and better understanding viruses.

Hydrogel paves way for biomedical breakthrough
Dubbed the ''invisibility cloak'', engineers at the University of Sydney have developed a hydrogel that allows implants and transplants to better and more safetly interact with surrounding tissue.

Biomedical instrument based on microvesicles
Researchers have proved that a microvesicle-based instrument can be effective in reducing inflammation and immune response.

Biomedical researchers get closer to why eczema happens
A new study from researchers at Binghamton University, State University of New York may help to peel back the layers of unhealthy skin -- at least metaphorically speaking -- and get closer to a cure.

Artificial intelligence improves biomedical imaging
ETH researchers use artificial intelligence to improve quality of images recorded by a relatively new biomedical imaging method.

Transparency and reproducibility of biomedical research is improving
New research publishing Nov. 20 in the open-access journal PLOS Biology from Joshua Wallach, Kevin Boyack, and John Ioannidis suggests that progress has been made in key areas of research transparency and reproducibility.

A pill for delivering biomedical micromotors
Using tiny micromotors to diagnose and treat disease in the human body could soon be a reality.

Accounting for sex differences in biomedical research
When it comes to health, a person's sex can play a role.

Biomedical Engineering hosts national conference on STEM education for underserved students
The University of Akron hosts a national conference aimed at ensuring underserved students have access to opportunities in science, technology, engineering and mathematics (STEM).

Boosting the lifetime and effectiveness of biomedical devices
A research team led by the University of Delaware's David Martin has discovered a new approach to boosting the lifetime and effectiveness of electronic biomedical devices.

Read More: Biomedical Engineering News and Biomedical Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.