Antibiotic identified as potential anti-cancer candidate

October 15, 2004

A molecular mechanism that was formerly thought to be important only in bacteria has now been shown to be a potential target for an anticancer therapy based on antibiotic use. David Scheinberg and colleagues, at the Sloan-Kettering Institute, have been investigating an enzyme in humans that is similar to one in bacteria called peptide deformylase (Pdf) and have found that an antibiotic called actinonin, which inhibits the human Pdf, also inhibits tumor growth. Pdf was thought to be important only to bacteria and the bacterially-related organelles of cells of higher organisms. Pdf is an enzyme that, during protein production, removes a modification called an N-formyl group from the first amino acid, a methionine, in the protein chain. While work began on the development of antibiotics against what was thought to be a bacterial-exclusive enzyme, genome-based data searches identified several classes of Pdf-like sequences in parasites, plants and mammals. Subsequent studies showed that the Pdfs were active both in culture and in the living organism, thus potentially derailing the usefulness of these antibiotics for specifically combating infectious agents. In previous studies, Scheinberg and colleagues had found that actinonin had an antiproliferative effect on human cancer cell lines and on tumor growth in a mouse model. They theorized this growth inhibitory activity might be related to actinonin's inhibition of human Pdf. The researchers now provide the evidence to support this theory. They show that human Pdf is active in the mitochondria and is essential for cellular growth and proliferation. They have designed and created a class of new actinonin-based Pdf inhibitors, and have demonstrated that they selectively inhibit growth in several human tumor cell lines. They further demonstrate that human tumor growth in mice can be suppressed by these Pdf inhibitors and suggest a mechanism of actinonin action. Taken together, these data have significant implications for the understanding and development of various Pdf-based therapeutic strategies for bacteria, mycobacteria, parasites, or cancer.
-end-
TITLE: Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics

AUTHOR CONTACT:
David A. Scheinberg
Sloan-Kettering Institute, 1275 York Ave, New York, NY 10021, USA
Phone: (212) 639-5010; Fax: (212) 717-3068; E-mail: d-scheinberg@ski.mskcc.org

View the PDF of this article at: http://www.jci.org/cgi/content/full/114/8/1107

JCI Journals

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.