Revealing the evolutionary history of threatened sea turtles

October 15, 2008

It's confirmed: Even though flatback turtles dine on fish, shrimp, and mollusks, they are closely related to primarily herbivorous green sea turtles. New genetic research carried out by Eugenia Naro-Maciel, a Marine Biodiversity Scientist at the Center for Biodiversity and Conservation at the American Museum of Natural History, and colleagues clarifies our understanding of the evolutionary relationships among all seven sea turtle species.

Naro-Maciel and colleagues used five nuclear DNA markers and two mitochondrial markers to test the evolutionary relationships of all species of marine turtles--leatherback, flatback, green, hawksbill, loggerhead, Kemp's Ridley, and Olive Ridley--and four 'outgroups,' or more distantly related animals. The results formed a well-supported phylogenetic tree, or cladogram, that tells the story of sea turtle evolution and is reported in the journal Molecular Phylogenetics and Evolution.

"The evolution of a specialized diet appears to have occurred three times, independently," says Naro-Maciel. "Many sea turtles are carnivorous generalists. However, hawksbills tend to have a diet of glass--they eat toxic sponges--while the leatherback consumes jellyfish and the green grazes mainly on algae or sea grass." Each of the species with specialized diets is positioned uniquely in the evolutionary tree.

Naro-Maciel and colleagues confirmed that one major group of sea turtles includes sister species flatback and green turtles (one carnivorous and the other herbivorous), while another clade is formed by the hawksbill, loggerhead, Kemp's Ridley and Olive Ridley turtles. The leatherback is confirmed as the most basal of all the sea turtles, and the Eastern Pacific green turtle--thought by some to be a separate species--falls within the green turtle species. The branches of this evolutionary tree can be calibrated with time using the new phylogeny and DNA data: Even though the ancestor of all sea turtles arose over 100 million years ago, the separation between the flatback and green turtles happened about 34 million years ago.

Determining the evolutionary relationships among sea turtles as well as the species identity of different populations of this highly migratory group of animals has implications for conservation. All sea turtles are included on the IUCN's Red List of Threatened Species, some of them as critically endangered, and an accurate understanding of this highly migratory group is important.

"These research results are another example of the importance of using systematics and taxonomy as a way to prioritize conservation efforts and strategies," says George Amato, Director of the Sackler Institute for Comparative Genomics at the Museum and an author of the article. "Only with these detailed studies can we better conserve the naturally occurring evolutionary novelty and patterns of genetic diversity for endangered species."
-end-
Other authors of this article, funded in part by the Regina Bauer Frankenberg Foundation for Animal Welfare, are Minh Le (American Museum of Natural History) and Nancy FitzSimmons (University of Canberra in Australia).

American Museum of Natural History

Related Biodiversity Articles from Brightsurf:

Biodiversity hypothesis called into question
How can we explain the fact that no single species predominates?

Using the past to maintain future biodiversity
New research shows that safeguarding species and ecosystems and the benefits they provide for society against future climatic change requires effective solutions which can only be formulated from reliable forecasts.

Changes in farming urgent to rescue biodiversity
Humans depend on farming for their survival but this activity takes up more than one-third of the world's landmass and endangers 62% of all threatened species.

Predicting the biodiversity of rivers
Biodiversity and thus the state of river ecosystems can now be predicted by combining environmental DNA with hydrological methods, researchers from the University of Zurich and Eawag have found.

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.

Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.

Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.

Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.

Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.

Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.

Read More: Biodiversity News and Biodiversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.