Patient roused from coma by a magnetic field

October 15, 2008

JOSH VILLA was 26 and driving home after a drink with a friend on 28 August 2005 when his car mounted the kerb and flipped over. Villa was thrown through the windscreen, suffered massive head injuries and fell into a coma.

Almost a year later, there was little sign of improvement. "He would open his eyes, but he was not responsive to any external stimuli in his environment," says Theresa Pape of the US Department of Veterans Affairs in Chicago, who helped treat him.

Usually there is little more that can be done for people in this condition. Villa was to be sent home to Rockford, Illinois, where his mother, Laurie McAndrews, had volunteered to care for him.

But Pape had a different suggestion. She enrolled him in a six-week study in which an electromagnetic coil was held over the front of his head to stimulate the underlying brain tissue. Such transcranial magnetic stimulation (TMS) has been investigated as a way of treating migraine, stroke, Parkinson's disease and depression, with some promising results, but this is the first time it has been used as a potential therapy for someone in a coma-like state.

The rapidly changing magnetic fields that the coil creates can be used either to excite or inhibit brain cells - making it easier or harder for them to communicate with one another. In Villa's case, the coil was used to excite brain cells in the right prefrontal dorsolateral cortex. This area has strong connections to the brainstem, which sends out pulses to the rest of the brain that tell it to pay attention. "It's like an "OK, I'm awake" pulse," says Pape.

At first, there was little change in Villa's condition, but after around 15 sessions something happened. "You started talking to him and he would turn his head and look at you," says McAndrews. "That was huge."

Villa started obeying one-step commands, such as following the movement of a thumb and speaking single words. "They were very slurred but they were there," says Pape, who presented her findings this month at an international meeting on brain stimulation at the University of Göttingen, Germany. "He'd say like "erm", "help", "help me".

After the 30 planned sessions the TMS was stopped. Without it, Villa became very tired and his condition declined a little, but he was still much better than before. Six weeks later he was given another 10 sessions, but there were no further improvements and he was sent home, where he remains today.

Villa is by no means cured. But he is easier to care for and can interact with visitors such as his girlfriend, who has stuck by him following the accident. "When you talk to him he will move his mouth to show he is listening," McAndrews says. "If I ask him, "Do you love me?" he'll do two slow eye blinks, yes. Some people would say it's not much, but he's improving and that's the main thing."

John Whyte of the Moss Rehabilitation Research Institute in Philadelphia, Pennsylvania, cautions that as intriguing as Villa's case is, it alone does not show that TMS is a useful treatment. "Even after eight months, it is not uncommon for patients to transition from the vegetative to the minimally conscious state without any particular intervention," he points out. He says TMS merits further investigation, along with other experimental treatments such as drugs which have temporarily roused three men from a coma, and deep brain stimulation, an invasive technique that roused a man out of a minimally conscious state.

"This is the first and very interesting use of repetitive TMS in coma," says Steven Laureys of the Coma Research Group at the University of Liège in Belgium. Our understanding of disorders of consciousness is so limited that even a single study can provide new insights, he says.

Pape acknowledges that further studies are needed to demonstrate that TMS really is beneficial, though she is convinced that it helped Villa.

He had only been given a 20 to 40 per cent chance of long-term recovery, and until he was given TMS his functioning had not improved since about four months after the accident. What's more, after the 15th TMS session, he improved incrementally with each session - further evidence that TMS was the cause.

Pape hopes to begin treating a second patient in a coma-like state later this year. This time she plans to adjust the number of pulses of TMS in each train, and to alter the gap between pulses to see if there is an optimum interval.

McAndrews is also in no doubt that her son's quality of life has improved as a result of TMS. "Before I felt like he was not responsive, that he was depressed almost. Now you move him around and he complains - he can show emotions on that level."
-end-
IF REPORTING ON THIS STORY, PLEASE MENTION NEW SCIENTIST AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://www.newscientist.com

UK CONTACT - Claire Bowles, New Scientist Press Office, London:
Tel: +44(0)20 7611 1210 or email claire.bowles@newscientist.co.uk

US CONTACT - New Scientist Boston office:
Tel: +1 617 386 2190 or email j.heselton@elsevier.com

New Scientist

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.