Announcing the discovery of an atomic electronic simulator

October 15, 2018

Targeting applications like neural networks for machine learning, a new discovery out of the University of Alberta and Quantum Silicon Inc. in Edmonton, Canada is paving the way for atomic ultra-efficient electronics, the need for which is increasingly critical in our data-driven society. The key to unlocking untold potential for the greenest electronics? Creating bespoke atomic patterns to in turn control electrons.

"Atoms are a bit like chairs that electrons sit on," said Robert Wolkow, physics professor and principal investigator on the project. "Much as we can affect conversations at a dinner party by controlling the grouping of chairs and assigned seating, controlling the placement of single atoms and electrons can affect conversations among electronics."

Wolkow explained that while atomic control over structures is not uncommon, making custom patterns to create new useful electronic devices has been beyond reach. Until now.

Though the tools of nanotechnology have permitted exacting control over atom placement on a surface for some time, two limitations have prevented practical electronic applications: the atoms would only remain in place at cryogenic temperature and could only readily be achieved on metal surfaces that were not technologically useful.

First proof of concept

Part atomic machine, part electronic circuit, Wolkow and his team have recently created a proof-of-concept device, overcoming the two major hurdles preventing this technology from being available to the masses. Both the robustness and the required electrical utility are now in hand. Additionally, the structures can be patterned on silicon surfaces, meaning scaling up the discovery is also easily achievable.

"This is the icing on a cake we've been cooking for about 20 years," said Wolkow. "We perfected silicon-atom patterning recently, then we got machine learning to take over, relieving long suffering scientists. Now, we have freed electrons to follow their nature--they can't leave the yard we created, but they can run around freely and play with the other electrons there. The positions the electrons arrive at, amazingly, are the results of useful computations."

Based on these results, construction has started on a scaled-up machine that simulates the workings of a neural network. Unlike normal neural networks embodied of transistors and directed by computer software, the atomic machine spontaneously displays the relative energetic stability of its bit patterns. Those in turn can be used to more rapidly and accurately train a neural network than is presently possible.

With the proof of concept in hand with interest from several major industrial partners combined with a publication in the prestigious peer-reviewed scientific journal Physical Review Letters, the realization of Wolkow's life's work devoted to creating an economic way to scale up mass production of greener, faster, smaller technology is imminent.

"Initiating and monitoring the evolution of single electrons within atom-defined structures" appears in the October 15 issue of Physical Review Letters.
-end-


University of Alberta

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.