Nav: Home

Purdue aims to find better drug 'fits,' avoid medication tragedies like thalidomide

October 15, 2018

WEST LAFAYETTE, Ind. - When a medication doesn't "fit" the body quite right, the results can be devastating. Such is the case for thalidomide, which was prescribed in the 1950s and 1960s as a sedative or hypnotic, even for pregnant women.

Although one version of thalidomide, referred to as the left-handed form, is a powerful tranquilizer, it was tragically discovered that the other form can disrupt fetal development. This resulted in horrific birth defects in more than 10,000 children around the world. For efficacy and safety, the bioactive drug molecules have to be as pure as possible, containing a single pure enantiomer. A pair of molecules that are mirror images of each other is called enantiomers.

Purdue University researchers, including chemistry professor and Nobel Prize winner Ei-ichi Negishi, have developed technology to create a new chemical process to synthesize drug-like molecules with ultra-high purity. The technology is featured in the latest edition of Angewandte Chemie.

Their technology aligns with Purdue's Giant Leaps celebration, acknowledging the university's global advancements made in health as part of Purdue's 150th anniversary. This is one of the four themes of the yearlong celebration's Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

Purdue's team is focused on α-Amino boronic acids and derivatives, which are key pharmacophores in a variety of FDA-approved drugs used for treating cancer, diabetes and other diseases and illnesses. They created what they believe to be the first general and highly efficient method for the synthesis of a variety of α-Amino tertiary boronic acids and esters in their enantiopure forms as a single pure enantiomer, both of which are crucial types of compounds for drug discovery research.

"Our work is important because the response of an organism to a particular molecule like a drug often depends on how that molecule fits a particular site on a receptor molecule in the organism, similar to how a left-handed person requires a left-handed glove," said Shiqing Xu, a member of the research team.

Purdue's technology comes at a time when, despite recent advances in chemistry, this kind of synthesis is a challenge for organic chemists, which has largely prevented its implementation in drug discovery.

The new chemical process has a broad scope for use among boron-based drugs and produces high yields.

The technology is patented through the Purdue Office of Technology Commercialization and is available for licensing.
-end-
About Purdue Office of Technology Commercialization

The Purdue Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities. The office is managed by the Purdue Research Foundation, which received the 2016 Innovation and Economic Prosperity Universities Award for Innovation from the Association of Public and Land-grant Universities. For more information about funding and investment opportunities in startups based on a Purdue innovation, contact the Purdue Foundry at foundry@prf.org. For more information on licensing a Purdue innovation, contact the Office of Technology Commercialization at otcip@prf.org. The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University.

Source: Shiqing Xu, sqxu@purdue.edu

MO<

Purdue University

Related Chemistry Articles:

Coordination chemistry and Alzheimer's disease
It has become evident recently that the interactions between copper and amyloid-β neurotoxically impact the brain of patients with Alzheimer's disease.
Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.
Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.
Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.
Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.
Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
Top 10 chemistry start-ups
Starting a new chemistry-based company is one part discovery, one part risk.
More Chemistry News and Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.