Nav: Home

How beetle larvae thrive on carrion

October 15, 2018

The burying beetle Nicrophorus vespilloides buries the cadavers of small animals in soil to use them as a food source for its offspring. However, the carcass and thus the breeding site are highly susceptible to microbial decomposition and putrefaction resulting in the production of toxic substances, the growth of microbial pathogens and nutrient loss. In a new study, researchers from the Max-Planck-Institute for Chemical Ecology, the University of Mainz and the University of Giessen, Germany, show that Nicrophorus vespilloides beetles are able to replace harmful microorganisms with their own beneficial gut symbionts, thus turning a carcass into a nursery with a microbial community that even promotes larval growth (Proceedings of the National Academy of Sciences of the United States of America, DOI: 10.1073/pnas.1812808115, October 2018).

How burying beetles prevent carrion decomposition

Burying beetles exploit nutrient-rich, but challenging resources for breeding: Their larvae feed on the cadavers of small animals. If untended by these beetles, carcasses are usually taken over by microbial decomposers. Decomposition of carrion under natural conditions is associated with growth of microbial pathogens and competitors, accumulation of toxic metabolites and rapid nutrient loss.

A team of scientists has now found out that the burying beetle Nicrophorus vespilloides preserves the food source for its offspring by inoculating it with beneficial microbes from its own gut. The researchers genetically characterized the bacterial and fungal communities of tended and untended carcasses and compared microbial metabolic activity. They also quantified putrescine and cadaverine, the foul-smelling organic compounds associated with carrion putrefaction, and amino acids. "Utilization of carcasses did not involve suppression of microbes, but the replacement of the native microbial community with the beetles' gut microbes. For example, tended carcasses showed suppression of a soil-associated mold but the growth of a beetle-associated yeast. This shift in microbial communities resulted in biochemical changes in beetle-tended carcasses", explains first author Shantanu Shukla from the Max Planck Institute for Chemical Ecology.

The importance of the symbionts for larval development

The researchers then wanted to know if these changes were beneficial to the insects that invest so heavily in defending and preparing carcasses. Therefore they tested the effect of the carrion microbiota on host fitness by measuring larval performance with and without the microbial symbionts present on the carrion. The negative effects on larval growth were considerable: Larvae fed on carcasses from which the matrix had been removed were significantly smaller although they had consumed the same amount of carcass tissue.

"Our study shows how insects can modify their habitats by culturing their symbionts both in their guts as well as outside on a breeding resource to increase fitness. The burying beetle is a fascinating example of symbiont-enabled exploitation of challenging resources", senior author Heiko Vogel summarizes.

The potential of the identified yeasts

The identified yeasts will now be studied in more detail, especially their role in detoxifying putrefaction products and (pre)digesting carrion to benefit the beetle larvae. "Since the microbiome transmitted by the beetles suppressed the growth of potentially harmful and toxin-producing bacteria and fungi, it is worthwhile to explore potential antimicrobials more closely, because they could also become relevant for medical applications", says Andreas Vilcinskas, who is leading the antibiotic research at the participating Fraunhofer Institute for Molecular Biology and Applied Ecology.
-end-
This study was funded the Max Planck Society and the Fraunhofer-Gesellschaft via the collaborative project "AIM-Biotech - Application of Insect-associated Microbes in industrial Biotechnology".

Original Publication:

Shukla, S. P., Plata, C., Reichelt, M., Steiger, S., Heckel. D. G., Kaltenpoth, M., Vilcinskas, A., Vogel, H. (2018). Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proceedings of the National Academy of Sciences of the United States of America, DOI: 10.1073/pnas.1812808115 http://dx.doi.org/10.1073/pnas.1812808115

Further Information:

Dr. Shantanu Shukla, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1569, E-Mail sshukla@ice.mpg.de

Dr. Heiko Vogel, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1512, E-Mail hvogel@ice.mpg.de

Contact and Media Requests:

Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2018.html

Max Planck Institute for Chemical Ecology

Related Beetles Articles:

Secret of why jewel scarab beetles look like pure gold, explained by physicists
The secrets of why central-American jewel scarab beetles look like they are made from pure gold, has been uncovered by physicists at the University of Exeter.
Beetles spark development of color-changing nanoparticles for commercial use
Inspired by the varying colors that gleam off of beetle shells, scientists have developed color-shifting nanoparticles that can change hue even after being embedded into a material.
Fossil beetles suggest that LA climate has been relatively stable for 50,000 years
Research based on more than 180 fossil insects preserved in the La Brea Tar Pits of Los Angeles indicate that the climate in what is now southern California has been relatively stable over the past 50,000 years.
Convergent con artists: How rove beetles keep evolving into army ant parasites
Marauding across the forest floor, aggressive army ant colonies harbor hidden enemies in their ranks -- parasitic beetles.
Specialized beetles shed light on predator-prey associations in the Cretaceous
A research team led by researchers from the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS) found a new morphologically specialized beetle from the mid-Cretaceous Burmese amber, shedding new light on the predator-prey associations in the late Mesozoic terrestrial ecosystem.
More Beetles News and Beetles Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...