Quantum paradox experiment may lead to more accurate clocks and sensors

October 15, 2019

More accurate clocks and sensors may result from a recently proposed experiment, linking an Einstein-devised paradox to quantum mechanics.

University of Queensland physicist Dr Magdalena Zych said the international collaboration aimed to test Einstein's twin paradox using quantum particles in a 'superposition' state.

"The twin paradox is one of the most counterintuitive predictions of relativity theory," Dr Zych said.

"It says that time can pass at different speeds for people at different distances to an enormous mass or travelling with different velocities.

"For example, relative to a reference clock far from any massive object, a clock closer to a mass or moving at high speed will tick slower.

"This creates a 'twin paradox', where one of a pair of twins departs on a fast-speed journey while the other stays behind.

"When the twins reunite, the travelling twin would be much younger, as different amounts of time have passed for each of them.

"It's a mind-blowing effect - featured in popular movies like Interstellar - but it's also been verified by real world experiments, and is even taken into consideration in order for everyday GPS technology to work."

The team included researchers from the University of Ulm and Leibniz University Hannover and found how one could use advanced laser technology to realise a quantum version of the Einstein's twin paradox.

In the quantum version, rather than twins there will be only one particle travelling in a quantum superposition.

"A quantum superposition means the particle is in two locations at the same time, in each of them with some probability, and yet this is different to placing the particle in one or the other location randomly," Dr Zych said.

"It's another way for an object to exist, only allowed by the laws of quantum physics.

"The idea is to put one particle in superposition on two trajectories with different speeds, and see if a different amount of time passes for each of them, as in the twin paradox.

"If our understanding of quantum theory and relativity is right, when the superposed trajectories meet, the quantum traveller will be in superposition of being older and younger than itself.

"This would leave an unmistakeable signature in the results of the experiment, and that's what we hope will be found when the experiment is realised in the future.

"It could lead to advanced technologies that will allow physicists to build more precise sensors and clocks - potentially, a key part of future navigation systems, autonomous vehicles and earthquake early-warning networks."

The experiment itself will also answer some open questions in modern physics.

"A key example is, can time display quantum behaviour or is it fundamentally classical?" Dr Zych said.

"This question is likely crucial for the 'holy grail' of theoretical physics: finding a joint theory of quantum and gravitational phenomena.

"We're looking forward to helping answer this question, and tackling many more."
-end-
The research is published in Science Advances (DOI: 10.1126/sciadv.aax8966).

University of Queensland

Related Quantum Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universit├Ąt Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

Quantum shake
There they were, in all their weird quantum glory: ultracold lithium atoms in the optical trap operated by UC Santa Barbara undergraduate student Alec Cao and his colleagues in David Weld's atomic physics group.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Quantum simulation of quantum crystals
International research team describes the new possibilities offered by the use of ultracold dipolar atoms

Quantum machines learn "quantum data"
Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

Quantum classifiers with tailored quantum kernel?
Quantum information scientists have introduced a new method for machine learning classifications in quantum computing.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

Read More: Quantum News and Quantum Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.