Nav: Home

Quantum paradox experiment may lead to more accurate clocks and sensors

October 15, 2019

More accurate clocks and sensors may result from a recently proposed experiment, linking an Einstein-devised paradox to quantum mechanics.

University of Queensland physicist Dr Magdalena Zych said the international collaboration aimed to test Einstein's twin paradox using quantum particles in a 'superposition' state.

"The twin paradox is one of the most counterintuitive predictions of relativity theory," Dr Zych said.

"It says that time can pass at different speeds for people at different distances to an enormous mass or travelling with different velocities.

"For example, relative to a reference clock far from any massive object, a clock closer to a mass or moving at high speed will tick slower.

"This creates a 'twin paradox', where one of a pair of twins departs on a fast-speed journey while the other stays behind.

"When the twins reunite, the travelling twin would be much younger, as different amounts of time have passed for each of them.

"It's a mind-blowing effect - featured in popular movies like Interstellar - but it's also been verified by real world experiments, and is even taken into consideration in order for everyday GPS technology to work."

The team included researchers from the University of Ulm and Leibniz University Hannover and found how one could use advanced laser technology to realise a quantum version of the Einstein's twin paradox.

In the quantum version, rather than twins there will be only one particle travelling in a quantum superposition.

"A quantum superposition means the particle is in two locations at the same time, in each of them with some probability, and yet this is different to placing the particle in one or the other location randomly," Dr Zych said.

"It's another way for an object to exist, only allowed by the laws of quantum physics.

"The idea is to put one particle in superposition on two trajectories with different speeds, and see if a different amount of time passes for each of them, as in the twin paradox.

"If our understanding of quantum theory and relativity is right, when the superposed trajectories meet, the quantum traveller will be in superposition of being older and younger than itself.

"This would leave an unmistakeable signature in the results of the experiment, and that's what we hope will be found when the experiment is realised in the future.

"It could lead to advanced technologies that will allow physicists to build more precise sensors and clocks - potentially, a key part of future navigation systems, autonomous vehicles and earthquake early-warning networks."

The experiment itself will also answer some open questions in modern physics.

"A key example is, can time display quantum behaviour or is it fundamentally classical?" Dr Zych said.

"This question is likely crucial for the 'holy grail' of theoretical physics: finding a joint theory of quantum and gravitational phenomena.

"We're looking forward to helping answer this question, and tackling many more."
-end-
The research is published in Science Advances (DOI: 10.1126/sciadv.aax8966).

University of Queensland

Related Quantum Articles:

Quantum material goes where none have gone before
Physicists have created a quantum material that can travel through a previously unexplored region marked by strange electronic properties.
'Poor man's qubit' can solve quantum problems without going quantum
Researchers have built and demonstrated the first hardware for a probabilistic computer, a possible way to bridge the gap between classical and quantum computing.
Quantum momentum
Occasionally we come across a problem in classical mechanics that poses particular difficulties for translation into the quantum world.
Quantum computers to clarify the connection between the quantum and classical worlds
Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
Engineering researchers have combined two emerging technologies for next-generation solar power -- and discovered that each one helps stabilize the other.
Quantum sensor for photons
A photodetector converts light into an electrical signal, causing the light to be lost.
Listening to quantum radio
Researchers at Delft University of Technology have created a quantum circuit that enables them to listen to the weakest radio signal allowed by quantum mechanics.
In the blink of an eye: Team uses quantum of light to create new quantum simulator
Imagine being stuck inside a maze and wanting to find your way out.
Is quantum computing scalable?
Debbie Leung, a fellow in CIFAR's Quantum Information Science program and a faculty member at the University of Waterloo's Institute for Quantum Computing, will discuss the challenges of scaling quantum computing at the AAAS meeting on Feb.
More Quantum News and Quantum Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.