Nav: Home

Genetics to feed the world

October 15, 2019

Wheat provides 20% of the total calories and protein content for the world's population and is a staple for more than 2.5 billion people around the world. However, the production system for this grain is currently facing several challenges that demand immediate solutions. How can wheat productivity increase in order to feed a population that will reach 9 billion in 2050 and at the same time deal with limited farmland and the harsh effects of climate change? Not to mention the threat of pests, for which it is necessary to find sustainable means instead of using harmful products.

The importance of this grain in the world's diet makes the search for the solutions to these challenges a matter of great urgency. In recently published research in the journal Nature Genetics, an international scientific team, including University of Cordoba researcher Carlos Guzmán, looked into the validity of genomic selection to improve wheat on a genetic level in order to cope with these problems.

"We are talking about testing whether it is possible to use information available in the genome to predict how productive a variety of wheat will be, if it will be drought- or heat-resistant and what quality its grain will have," explains Guzmán, who participated in the study via his work as head of the Chemistry and Wheat Quality Laboratory at the International Maize and Wheat Improvement Center (abbreviated to CIMMYT in Spanish) in Mexico.

According to the researcher, "thanks to this study, it will be possible to speed up improvement programs in order to develop new varieties of wheat, with less field work and less lab work."

The main aim of the study was to verify how precise the predictions done with genomic selection were for each characteristic of wheat. The results were quite varied. "For instance, the level of prediction was very good to determine resistance to certain diseases and grain quality but results were lower when attempting to predict yield," explains Carlos Guzmán.

Another aim was to find out which chromosomal regions of the DNA are associated with a specific characteristic in order to identify which gene or gene group needs to be worked with to improve each characteristic. Moreover, the identified chromosome regions turned out to be consistent over several geographical areas, meaning these results could be applied to other wheat improvement programs.

Though research has already been done in this area, this research project has the widest scope that has been done to date, due to the extent of the wheat populations and the diverse environments used to measure certain characteristics, such as field performance. In this specific case, experimental trials in over ten countries were used. The wide range of these countries include Canada, Mexico, India, Morocco and Sudan, leading to more precise results.

"The next step will be to see how we can integrate the genomic selection tool into a real wheat improvement program such as the International Maize and Wheat Improvement Center," reveals Carlos Guzmán. This program is one of the most important ones in the world. It is estimated that over 50% of the varieties of wheat grown around the world originally came from, or partly from, the International Maize and Wheat Improvement Center.

This program seeks to obtain varieties of wheat that are more productive, more disease-resistant, more tolerant to climate change and that produce grains that make flour suitable for making a range of different products. This can be done by genetic crossing and improvement. In addition to increasing wheat production, research is also being done to improve its nutritional content, given that most people who have wheat as a staple in their diet get insufficient iron and zinc.

The next research projects will focus on improving genomic selection technology and finding new ways to predict yield. According to the researcher, "this tool will not do away with field testing but it will help reduce it, which will lower costs and save time."
-end-
Philomin Juliana, Jesse Poland, Julio Huerta-Espino, Sandesh Shrestha, José Crossa, Leonardo Crespo-Herrera, Fernando Henrique Toledo, Velu Govindan, Suchismita Mondal, Uttam Kumar, Sridhar Bhavani, Pawan K. Singh, Mandeep S. Randhawa, Xinyao He, Carlos Guzman, Susanne Dreisigacker, Matthew N. Rouse, Yue Jin, Paulino Pérez-Rodríguez, Osval A. Montesinos-López, Daljit Singh, Mohammad Mokhlesur Rahman, Felix Marza, Ravi Prakash Singh. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nature Genetics. DOI: 10.6084/m9.figshare.8940257.v1

University of Córdoba

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.