Nav: Home

Inside the fuel cell -- Imaging method promises industrial insight

October 15, 2019

WASHINGTON, D.C., October 15, 2019 - Hydrogen-containing substances are important for many industries, but scientists have struggled to obtain detailed images to understand the element's behavior. In Review of Scientific Instruments, from AIP Publishing, researchers demonstrate the quantification of hydrogen for different states of water -- i.e., liquid, frozen and supercooled -- for applications to eco-friendly fuel cells.

"Our method is not limited to fuel cells or water. There's a lot of compounds in the chemical industries, including electrochemistry, electrolytes for batteries or redox flow cells, that also contain hydrogen," said team leader Pierre Boillat, from the Paul Scherrer Institut in Switzerland.

When pure water is cooled below zero degrees Celsius, it doesn't always form ice but can remain in a liquid form known as supercooled water. This phenomenon occurs to some extent in polymer electrolyte fuel cells, and as the freezing and subsequent volume expansion of water is known to induce damage, there is interest in understanding these states of water.

The Swiss team used beams of neutrons to examine the inside of an aluminum-walled calibration cell. Neutrons bounced off the hydrogen of H2O molecules in a detectable pattern, like how X-rays are used to image bones. Boillat's team previously demonstrated that the differing cross-sections of ice and supercooled water at lower neutron energies could be used for imaging purposes. They have refined the process to produce images with unprecedented contrast.

"We developed a method that uses a high-duty cycle of repetitive pulses that are very broad, giving much stronger beam flux, so that we can measure faster and with better image quality," said Boillat, describing the so-called high-duty cycle, time-of-flight measurements, which his team implemented at the beamline of the European Spallation Source test setup located at Helmholtz Zentrum Berlin in Germany.

Author Muriel Siegwart explained the increase in measurement speed, from five hours to five minutes, was critical for following a reaction's progress. She hopes to increase the speed even further, so they can track the formation of ice and subsequent damage within fuel cells.

Boillat highlighted how the team's cross-continental collaborations were critical to confirm experimental findings. This included collaborations with neutron detector experts at the University of California, Berkeley and theoretical simulation experts at the Neutron Physics Department and Instituto Balseiro in Bariloche, Argentina.

"We observed some impact of the temperature on the measurements but weren't sure if this was a form of experimental bias. It matched perfectly with the theoretical models proving this was a real effect," said Boillat.

Boillat's team was also among the first to experimentally utilize the wavelength frame multiplication chopper system, an enhancement technique that will be included in several instruments at the European Spallation Source facility under construction in Sweden. Leveraging the reference data obtained with this method, the team developed a theoretical framework that optimizes contrast-to-noise ratio in acquired images. The team is applying this framework to the analysis of lithium-ion batteries.
-end-
The article, "Distinction between super-cooled water and ice with high duty cycle time-of-flight neutron imaging," is authored by Muriel Siegwart, Robin Woracek, Jose Ignacio Marquez Damian, Anton S. Tremsin, Victoria Manzi-Orezzoli, Markus Strobl, Thomas Justus Schmidt and Pierre Boillat. The article will appear in Review of Scientific Instruments on Oct. 15, 2019 (DOI: 10.1063/1.51102880). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5110288.

ABOUT THE JOURNAL

Review of Scientific Instruments publishes novel advancements in scientific instrumentation, apparatuses, techniques of experimental measurement, and related mathematical analysis. Its content includes publication on instruments covering all areas of science including physics, chemistry, materials science, and biology. See https://aip.scitation.org/journal/rsi.

American Institute of Physics

Related Hydrogen Articles:

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
New catalyst produces cheap hydrogen
QUT chemistry researchers have discovered cheaper and more efficient materials for producing hydrogen for the storage of renewable energy that could replace current water-splitting catalysts.
The faint glow of cosmic hydrogen
A study published recently in Nature magazine, in which Ana Monreal-Ibero, a researcher at the Instituto de Astrofísica de Canarias (IAC) is a participant, reveals the presence of a hitherto undetected component of the universe: large masses of gas surrounding distant galaxies.
New technology improves hydrogen manufacturing
INL researchers demonstrated high-performance electrochemical hydrogen production at a lower temperature than had been possible before.
Hydrogen transfer: One thing after the other
Hydride transfer is an important reaction for chemistry (e.g., fuel cells), as well as biology (e.g., respiratory chain and photosynthesis).
More Hydrogen News and Hydrogen Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.