Brain networks more stable in individuals with higher cognitive abilities

October 15, 2019

FRANKFURT. The interconnections and communication between different regions of the human brain influence our behaviour in many ways. This is also true for individual differences in higher cognitive abilities. The brains of more intelligent individuals are characterised by temporally more stable interactions in neural networks. This is the result of a recent study conducted by Dr Kirsten Hilger and Professor Christian Fiebach from the Department of Psychology and Brain Imaging Center of Goethe University Frankfurt in collaboration with Dr Makoto Fukushima and Professor Olaf Sporns from Indiana University Bloomington, USA. The study was published online in the scientific journal 'Human Brain Mapping' on 6th October.

Intelligence and its neurobiological basis

Various theories have been proposed to explain the differences in different individuals' cognitive abilities, including neurobiological models. For instance, it has been proposed that more intelligent individuals make stronger use of certain brain areas, that their brains generally operate more efficiently, or that certain brain systems are better wired in smarter people. Only recently have methodological advances made it possible to also investigate the temporal dynamics of human brain networks, using functional magnetic resonance imaging (fMRI). An international team of researchers from Goethe University and Indiana University Bloomington analysed fMRI scans of 281 participants to investigate how dynamic network characteristics of the human brain relate to general intelligence.

Stability of brain networks as general advantage

The human brain has a modular organisation - it can be subdivided into different networks that serve different functions such as vision, hearing, or the control of voluntary behaviour. In their current study, Kirsten Hilger and colleagues investigated whether this modular organisation of the human brain changes over time, and whether or not these changes relate to individual differences in the scores that study participants achieved in an intelligence test. The results of the study show that the modular brain network organisation of more intelligent persons exhibited less fluctuations during the fMRI measurement session. This increased stability of brain network organisation was primarily found in brain systems that are important for the control of attention.

Attention plays a key role

"The study of the temporal dynamics of human brain networks using fMRI is a relatively new field of research" says Hilger. She speculates: "The temporally more stable network organisation in more intelligent individuals could be a protective mechanism of the brain against falling into maladaptive network states in which major networks disconnect and communication may be hampered." She also stresses that it remains an open question how exactly these network properties influence cognitive ability: "At present, we do not know whether the temporally more stable brain connections are a source or a consequence of higher intelligence. However, our results suggest that processes of controlled attention - that is, the ability to stay focused and to concentrate on a task - may play an important role for general intelligence."
-end-
Publication:

Hilger, K., Fukushima, M., Sporns, O., & Fiebach, C. F. (2019). Temporal Stability of Functional Brain Modules Associated with Human Intelligence. Human Brain Mapping. (DOI: https://doi.org/10.1002/hbm.24807)

Further information:

Dr Kirsten Hilger, Department of Psychology, Theodor-W.-Adorno-Platz 6, D-60323 Frankfurt, Germany. hilger@psych.uni-frankfurt.de, Tel. +49 (0)160-3391686; see also the webpage of the Laboratory for Cognitive Neuroscience at Goethe University: http://fiebachlab.org

Current news about science, teaching, and society can be found on GOETHE-UNI online (http://www.aktuelles.uni-frankfurt.de)

Goethe University is a research-oriented university in the European financial centre Frankfurt am Main. The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a "foundation university". Today, it is one of the three largest universities in Germany. Together with the Technical University of Darmstadt and the University of Mainz, it is a partner in the inter-state strategic Rhine-Main University Alliance. Internet: http://www.uni-frankfurt.de

Publisher: The President of Goethe University Editor: Dr. Dirk Frank, General Editor / Deputy Manager PR & Communication, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main phone +49 69 798-13753, frank@pvw.uni-frankfurt.de, http://www.uni-frankfurt.de

Goethe University Frankfurt

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.