Nav: Home

Going against the flow around a supermassive black hole

October 15, 2019

At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas. When astronomers used the Atacama Large Millimeter/submillimeter Array (ALMA) to study this cloud in more detail, they made an unexpected discovery that could explain why supermassive black holes grew so rapidly in the early Universe.

"Thanks to the spectacular resolution of ALMA, we measured the movement of gas in the inner orbits around the black hole," explains Violette Impellizzeri of the National Radio Astronomy Observatory (NRAO), working at ALMA in Chile and lead author on a paper published in the Astrophysical Journal. "Surprisingly, we found two disks of gas rotating in opposite directions."

Supermassive black holes already existed when the Universe was young - just a billion years after the Big Bang. But how these extreme objects, whose masses are up to billions of times the mass of the Sun, had time to grow in such a relatively short timespan, is an outstanding question among astronomers. This new ALMA discovery could provide a clue. "Counter-rotating gas streams are unstable, which means that clouds fall into the black hole faster than they do in a disk with a single rotation direction," said Impellizzeri. "This could be a way in which a black hole can grow rapidly."

NGC 1068 (also known as Messier 77) is a spiral galaxy approximately 47 million light-years from Earth in the direction of the constellation Cetus. At its center is an active galactic nucleus, a supermassive black hole that is actively feeding itself from a thin, rotating disk of gas and dust, also known as an accretion disk.

Previous ALMA observations revealed that the black hole is not only gulping down material, but also spewing out gas at incredibly high speeds - up to 500 kilometers per second (more than one million miles per hour). This gas that gets expelled from the accretion disk likely contributes to hiding the region around the black hole from optical telescopes.

Impellizzeri and her team used ALMA's superior zoom lens ability to observe the molecular gas around the black hole. Unexpectedly, they found two counter-rotating disks of gas. The inner disk spans 2-4 light-years and follows the rotation of the galaxy, whereas the outer disk (also known as the torus) spans 4-22 light-years and is rotating the opposite way.

"We did not expect to see this, because gas falling into a black hole would normally spin around it in only one direction," said Impellizzeri. "Something must have disturbed the flow, because it is impossible for a part of the disk to start rotating backward all on its own."

Counter-rotation is not an unusual phenomenon in space. "We see it in galaxies, usually thousands of light-years away from their galactic centers," explained co-author Jack Gallimore from Bucknell University in Lewisburg, Pennsylvania. "The counter-rotation always results from the collision or interaction between two galaxies. What makes this result remarkable is that we see it on a much smaller scale, tens of light-years instead of thousands from the central black hole."

The astronomers think that the backward flow in NGC 1068 might be caused by gas clouds that fell out of the host galaxy, or by a small passing galaxy on a counter-rotating orbit captured in the disk.

At the moment, the outer disk appears to be in a stable orbit around the inner disk. "That will change when the outer disk begins to fall onto the inner disk, which may happen after a few orbits or a few hundred thousand years. The rotating streams of gas will collide and become unstable, and the disks will likely collapse in a luminous event as the molecular gas falls into the black hole. Unfortunately, we will not be there to witness the fireworks," said Gallimore.
-end-
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

National Radio Astronomy Observatory

Related Black Hole Articles:

How to have a blast like a black hole
Scientists at Osaka University have created magnetized-plasma conditions similar to those near a black hole using very intense laser pulses.
Black hole collision may have exploded with light
Astronomers have seen what appears to the first light ever detected from a black hole merger.
Black hole's heart still beating
The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.
Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.