Nav: Home

New understanding of the evolution of cosmic electromagnetic fields

October 15, 2019

Next year is the 200 years anniversary of the discovery of electromagnetism by the Danish physicist H.C. Ørsted. Even 200 years after its discovery, the existence of electromagnetism still brings up new puzzles pertaining to their origin.

One such mystery is the origin of electro magnetic fields on the very largest scale in the universe.

While researchers have believed for some time that magnetic fields of femto-Gauss strength extend to the largest scales in the universe -- to scales larger than the largest clusters of galaxies -- it is an unresolved mystery how such magnetic fields can have been created in the early universe.

One logical possibility is that the magnetic fields were enhanced by the primordial period of inflation, which is needed also to solve the flatness and horizon problem in the standard Big-Bang model, if the magnetic fields in this period had some new non-standard interactions with the inflaton particle. The inflaton particle is responsible for driving the period of primordial inflation.

But the problem is that magnetic fields generated during inflation have been believed to quickly be washed away by the subsequent ordinary expansion of the universe making successful inflationary magnetogenesis a challenge.

Recently the researchers Takeshi Kobayashi from International Centre for Theoretical Physics in Italy and Martin S. Sloth from University of Southern Denmark (the university in the region were H.C. Ørsted was born) have shown that due to Faraday's law of induction, the assumed evolution of electromagnetic fields after inflation is different than previously assumed if there are also strong primordial electric fields.

The work has been published in the journal Physical Review D.

"This opens a new door to our understanding of the origin of cosmic magnetic fields", says Martin S. Sloth, professor, CP3-Origins, Center for Cosmology and Particle Physics Phenomenology, University of Southern Denmark.
-end-


University of Southern Denmark

Related Magnetic Fields Articles:

Controlling artificial cilia with magnetic fields and light
Researchers have made artificial cilia, or hair-like structures, that can bend into new shapes in response to a magnetic field, then return to their original shape when exposed to the proper light source.
Are gamma-ray bursts powered by a star's collapsing magnetic fields?
In its final moments of life, a distant massive star releases an intense burst of high-energy gamma radiation - a Gamma Ray Burst (GRB) - the brightest sources of energy in the universe, detectable to humans through powerful telescopes.
Not everything is ferromagnetic in high magnetic fields
High magnetic fields have a potential to modify the microscopic arrangement of magnetic moments because they overcome interactions existing in zero field.
Ultracold gases in time-dependent magnetic fields
Zk Noor Nabi from Zhejiang University, China and co-workers from the Indian Institute of Technology studied the phase transition between the Mott insulating (MI) and superfluid (SF) states of an ultracold gas in a time-dependent magnetic field.
Visualizing strong magnetic fields with neutrons
Researchers at the Paul Scherrer Institute PSI have developed a new method with which strong magnetic fields can be precisely measured.
Scientists deepen understanding of magnetic fields surrounding Earth and other planets
Now, a team of scientists has completed research into waves that travel through the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.
Technique pulls interstellar magnetic fields within easy reach
A new, more accessible and much cheaper approach to surveying the topology and strength of interstellar magnetic fields -- which weave through space in our galaxy and beyond, representing one of the most potent forces in nature -- has been developed by researchers at the University of Wisconsin-Madison.
A bubbly new way to detect the magnetic fields of nanometer-scale particles
The method provides manufacturers with a practical way to measure and improve their control of the properties of magnetic nanoparticles for a host of medical and environmental applications.
Quantum sensing method measures minuscule magnetic fields
A new technique developed at MIT uses quantum sensors to enable precise measurements of magnetic fields in different directions.
The FASEB Journal: Magnetic fields enhance bone remodeling
Since the creation of 3D-printed (3DP) porous titanium scaffolds in 2016, the scientific community has been exploring ways to improve their ability to stimulate osteogenesis, or bone remodeling.
More Magnetic Fields News and Magnetic Fields Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.