Nav: Home

Startled fish escape using several distinct neuronal circuits

October 15, 2019

A fast knee-jerk "ballistic" escape response and a more considered "delayed" escape response are mediated by distinct and parallel neuronal pathways in zebrafish, according to a study published October 15 in the open-access journal PLOS Biology by Harold Burgess of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and colleagues.

Escape behaviors are defensive responses to threats. Many species execute very fast ballistic escape reactions to avoid imminent danger. But some species possess multiple modes of escape, including less powerful responses characterized by delayed initiation and less vigorous motor activity. There has been little work characterizing circuits that mediate delayed escape responses, and how sensory cues are integrated within escape circuits remains poorly understood. To resolve these questions, Burgess and colleagues conducted an unbiased screen to identify specific neurons that drive delayed escape responses in zebrafish.

The researchers used high-speed video to analyze escape responses triggered by acoustic or vibrational stimuli in free-swimming zebrafish larvae. They found that rather than a ballistic response, less dangerous threats elicit a delayed escape response, characterized by flexible trajectories, and driven by a cluster of just 38 neurons in the hindbrain (19 on each side), which are completely separate from the fast-escape pathway.

Neurons that initiate rapid ballistic escape responses receive direct auditory input and directly drive motor neurons; by contrast, the input and output pathways for delayed escapes are indirect, providing an opportunity for the brain to integrate several different types of sensory information. These results show that decision-making in the vertebrate escape system is enabled by parallel pathways for ballistic responses and flexible delayed actions. According to the authors, this circuit of 38 escape neurons may represent an evolutionarily ancient pathway for defensive responses to threats sensed via acoustic or vibrational cues.
-end-
Peer-reviewed; Experimental Study; Animals

In your coverage please use this URL to provide access to the freely available article in PLOS Biology:https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000480

Citation: Marquart GD, Tabor KM, Bergeron SA, Briggman KL, Burgess HA (2019) Prepontine non-giant neurons drive flexible escape behavior in zebrafish. PLoS Biol 17(10): e3000480. https://doi.org/10.1371/journal.pbio.3000480

Funding: This work was supported by the Intramural Research Programs of the Eunice Kennedy Shriver National Institute for Child Health and Human Development (http://www.nichd.nih.gov) to HAB and the National Institute of Neurological Disorders and Stroke (http://www.ninds.nih.gov) to KLB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Neurons Articles:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.
Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.
A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.
Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.
Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.
Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.
The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.