Nav: Home

Bats save energy by reducing energetically costly immune functions during annual migration

October 15, 2020

Both seasonal migration and the maintenance and use of an effective immune system come with substantial metabolic costs and are responsible for high levels of oxidative stress. How do animals cope in a situation when energy is limited and both costly body functions are needed? A team of scientists led by the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) investigated whether and how the immune response changes between pre-migration and migration seasons in the Nathusius pipistrelle bat. They confirmed that migratory bats favour the energetically "cheaper" non-cellular (humoral) immunity during an immune challenge and selectively suppress cellular immune responses. Thereby, bats save energy much needed for their annual migration. The results are published in the scientific journal Scientific Reports.

The team of scientists around Christian C. Voigt, head of the Department of Evolutionary Ecology of the Leibniz-IZW, and Gábor Á. Czirják, senior scientist at the Department of Wildlife Diseases of the Leibniz-IZW, assessed the activity of several branches of the immune system of the Nathusius pipistrelle bat before and during migration. The seasonal journey of a 7 g Nathusius pipistrelle is energy-intensive since they fly more than 2.000 km during their annual journeys between the Baltic countries and southern France, and the metabolic turnover during flying is an order of magnitude higher than the basal metabolic rate . "It seems likely that bats will have to trade some body functions such as the immune response against the high cost of flight during migration", Voigt says. In order to verify this conjecture and to elucidate how the immune system is configured during this pivotal time of the year, the team measured the cellular and humoral response of the innate immune system (relative neutrophil numbers and haptoglobin concentration, respectively) and the cellular response of adaptive immunity (relative lymphocyte numbers) before and during migration. They compared baseline levels of these immune parameters and studied them in response to an antigen challenge.

"Our results confirm significant differences between the two periods. We conclude that this species of bat pays attention to the energy requirements of the different branches of immunity when switching from pre-migratory to the migratory season", Voigt explains. Before migration the cellular response of the innate immune response was significantly higher than during migration, whereas the humoral response of the same immune branch was dominant during the migration period. "The Nathusius pipistrelle responds with a strong humoral immune response to a challenge mimicking a bacterial infection. This response is more pronounced during migration, while there is no activation of the cellular response in such a situation", adds Czirják. When the animals embark on their strenuous journeys they reduce the cellular immune response, which is more energy-demanding than the humoral response. With this strategy the Nathusius pipistrelle might save energy during migration.

"The open question is whether or not the focus on humoral immunity during the migration period puts bats at some risk", Voigt says. "It is possible that they are more susceptible to certain pathogens while migrating if bats cannot mount an adequate cellular immune response." These and other related questions are now the topic of further immunological research by the bat research group at the Leibniz-IZW.

Forschungsverbund Berlin

Related Immune System Articles:

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.
Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.
COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.
Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.
Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.
Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at