Ultrasound technique offers more precise, quantified assessments of lung health

October 15, 2020

Researchers from North Carolina State University and the University of North Carolina have developed a technique that uses ultrasound to provide non-invasive assessments of pulmonary fibrosis and pulmonary edema. The technique has been shown to both quantify lung scarring and detect lung fluid in rats. A study on pulmonary edema in humans is under way.

The new ultrasound technique is significant because it would allow healthcare providers to determine how effective medical interventions are at reducing lung scarring (pulmonary fibrosis) or fluid in the lungs (pulmonary edema).

"Assessing the extent of fibrosis in the lung currently requires computerized tomography (CT) scans, and sophisticated pulmonary function tests," says Marie Muller, co-senior author of the study and an associate professor of mechanical and aerospace engineering at NC State. "Both aspects of the assessment present challenges.

"CT scans use radiation, so you want to limit their use. They are also expensive, and require a trained radiologist. For all of these reasons, they are not suitable for frequent monitoring. Ultrasound is a good solution because it does not pose a cancer risk, it's portable, it's relatively inexpensive, and our technique effectively gives users a quantitative assessment of the fibrosis."

"One of the pulmonary function tests is called a DLCO test," says Dr. Tom Egan, co-senior author on the study and a professor of surgery at UNC. "The DLCO test measures the amount of gas exchange surface in the lung, and it requires specialized equipment that you won't find outside of hospitals and some large pulmonary clinics. The specialized technology means that this testing can be expensive - particularly now, due to heightened decontamination procedures associated with the COVID-19 pandemic. If this new ultrasound technology can reduce our reliance on DLCO tests, that would likely reduce costs for patients."

"Being able to monitor pulmonary edema in patients with heart failure would also be very useful," Muller says. "This is often done by assessing fluctuations in a patient's body weight in order to estimate how much fluid has collected in the patient's lungs - which is not as specific as we'd like it to be.

"We've recently received a grant from NIH to investigate if our novel ultrasound technique can quantify pulmonary edema in heart failure patients."

"Pulmonary fibrosis is a major public health problem," Egan says. "The most common form of pulmonary fibrosis affects 200,000 Americans, with 50,000 new cases diagnosed each year.

"Pulmonary edema is another common condition. It can be caused by a number of health conditions, but affects more than 75% of patients with heart failure."

The new technique makes use of the multiple transducer elements on conventional ultrasound probes to direct multiple ultrasound waves at lung tissue. As the ultrasound waves bounce back to the transducer, the data is collected and fed into a computational model that determines the density of healthy alveoli in the lung. This can be used to provide a quantitative assessment of the amount of fibrosis in the lung tissue. Researchers are testing whether it can also quantify the amount of water in the lung.

The current paper demonstrates the efficacy of the technique in assessing pulmonary fibrosis and edema in rats, and distinguishing between the two lung abnormalities.

"The automated quantitative assessment would allow the technology to be used by personnel with minimal training, and would allow healthcare providers to compare data across time," Muller says. "For example, caregivers would be able to tell if a patient's edema is getting better or worse."

"Because this is ultrasound, people have a hard time grasping this concept: there are no images; the output is a number," Egan says.

"The quantitative element of this work is particularly important, given that previous approaches to assessing lung health with ultrasound could really only provide qualitative assessments," Muller says. "They could say that lung health was bad or good, but couldn't give you measurable gradients between the two."

The researchers have received funding for a study focused on using the technique to assess pulmonary edema in human patients, and are applying for funding to pursue the work in patients with pulmonary fibrosis.

"We've seen new treatments come online in recent years for pulmonary fibrosis patients," Egan says. "It would be valuable to determine how effective they are, and what factors may contribute to their effectiveness."
The new study, "In-Vivo Assessment of Pulmonary Fibrosis and Pulmonary Edema in Rodents Using Ultrasound Multiple Scattering," is published in the journal IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. First author of the paper is Kaustav Mohanty, a recent Ph.D. graduate from NC State. The paper was co-authored by Yasamin Karbalaeisadegh of NC State; and John Blackwell, Dr. Mir Ali and Dr. Behrooz Masuodi of UNC.

The work was done with support from the Department of Defense, under grant number W81XWH1810101.

North Carolina State University

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.