A new ultrafast control scheme of ferromagnet for energy-efficient data storage

October 15, 2020

The digital data generated around the world every year is now counted in zettabytes, or trillions of billions of bytes - equivalent to delivering data for hundreds of millions of books every second. The amount of data generated continues to grow. If existing technologies remained constant, all the current global electricity consumption would be devoted to data storage by 2040.

Researchers at the Université de Lorraine in France and Tohoku University reported on an innovative technology that leads to a drastic reduction in energy for data storage.

The established technology utilizes an ultrafast laser pulse whose duration is as short as 30 femto seconds - equal to 0.0000000000000003 seconds. The laser pulse is applied to a heterostructure consisting of ferrimagnetic GdFeCo, nonmagnetic Cu and ferromagnetic Co/Pt layers.

"Previous research, conducted by a subset of the current research group, observed magnetic switching of the ferromagnetic layer after the ferrimagnetic layer had been switched." This time, the researchers uncovered the mechanism accounting for this peculiar phenomena and found that a flow of electron spin, referred to as a spin current, accompanying the switching of ferrimagnetic GeFeCo plays a crucial role in inducing the switching of ferromagnetic Co/Pt (Fig. 1).

Based on this insight, they demonstrated a much faster and less energy consuming switching of the ferromagnet. This was driven by a single laser pulse without a switching of the ferrimagnetic layer. "This is very good news for future data-storage applications as this technology can provide an efficient scheme to write digital information to a magnetic medium, which is currently based on a magnetic-field-induced switching," says Shunsuke Fukami, co-author of the study.
-end-
The partnership between the Université de Lorraine and Tohoku University is driven, in large part, by the exchanges of graduate students and post-docs between the two universities. More than a dozen exchanges on both sides have already taken place for periods of several months. This partnership was supported by Presidents Hideo Ohno and Pierre Mutzenhardt, who signed a consortium agreement in 2019 during the World Materials Forum.

Tohoku University

Related Data Storage Articles from Brightsurf:

Reviewing multiferroics for future, low-energy data storage
Big data and exponential demands for computations are driving an unsustainable rise in global ICT energy use.

A new ultrafast control scheme of ferromagnet for energy-efficient data storage
Using a single laser pulse that did not switch the ferrimagnetic layer, researchers demonstrated a much faster and less energy consuming switching of the ferromagnet.

Multi-state data storage leaving binary behind
Electronic data is being produced at a breath-taking rate. Around ten zettabytes (ten trillion gigabytes) of data is stored in global server farms, and that's doubling every two years.

Robust high-performance data storage through magnetic anisotropy
A technologically relevant material for HAMR data memories are thin films of iron-platinum nanograins.

Energy-saving servers: Data storage 2.0
A research team of Mainz University has developed a technique that will potentially halve the energy required to write data to servers and make it easier to construct complex server architectures.

New approach to DNA data storage makes system more dynamic, scalable
Researchers have developed a fundamentally new approach to DNA data storage systems, giving users the ability to read or modify data files without destroying them and making the systems easier to scale up for practical use.

Scientists take steps to create a 'racetrack memory,' potentially enhancing data storage
A team of scientists has taken steps to create a new form of digital data storage, a ''Racetrack Memory,'' which opens the possibility to both bolster computer power and lead to the creation of smaller, faster, and more energy efficient computer memory technologies.

Discovery offers new avenue for next-generation data storage
The demands for data storage and processing have grown exponentially as the world becomes increasingly connected, emphasizing the need for new materials capable of more efficient data storage and data processing.

Magnetic whirls in future data storage devices
Magnetic (anti)skyrmions are microscopically small whirls that are found in special classes of magnetic materials.

Laser writing enables practical flat optics and data storage in glass
Femtosecond laser machining has emerged as an attractive technology enabling appications ranging from eye surgery to direct writing in the bulk of transparent materials.

Read More: Data Storage News and Data Storage Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.