The Sunspots Are Coming

October 15, 1997


Scientists To Debate Year 2,000 Solar 'Max' Effects On Earth

Atmospheric scientists participating in a workshop funded in part by the National Science Foundation (NSF) will debate the effects of so-called "space weather" on earth's navigation and communication signals -- two of the major systems affected by an upcoming "solar max." The workshop will take place in Bethesda, Maryland, at COMSAT Corporation, from October 22-24, 1997.

Moving through its eleven-year activity cycle, the sun will be in its most active state around the year 2,000, with manifestations of the "solar max" (better known as the peak of the sunspot cycle) persisting through the early years of the next decade.

"Space weather" refers to conditions on the sun, in the solar wind, and in earth's atmosphere that can influence the performance and reliability of space-borne and ground-based technological systems, and can endanger human life or health. Adverse conditions in the space environment, say atmospheric scientists, can cause disruption of satellite operations, communications, and navigation and electric power distribution grids, leading to a variety of socioeconomic losses.

The workshop will bring together space-weather modelers, atmospheric researchers, systems engineers and operators, and others whose navigation and communication systems employ signals that propagate through the ionosphere, the layer of earth's atmosphere above the stratosphere.

As the turn of the millennium nears, emerging human technologies and a natural cycle that has existed for eons will converge in unknown ways, according to NSF's Sunanda Basu and other atmospheric scientists organizing the workshop.

The human world has changed much since the last solar 'max,' in 1989, explains Basu. No longer does the potential for global armed conflict dominate technological development, particularly for applications in navigation and communications. The Global Positioning System (GPS), for example, is becoming ubiquitous, and some of its applications more demanding of accuracy. A plethora of communication systems is emerging, says Basu, including many that employ VHF and/or UHF bands for links via the ionosphere.

Abrupt variations in solar ultraviolet radiation and in the solar wind that interact with earth's atmosphere are "space weather" events that strongly perturb the ionosphere, according to Basu, and result in many propagation anomalies. "Such events will become increasingly common and severe as we near the solar-activity maximum that will occur during the years spanning the turn of the century."

The workshop will provide two-way interaction between space weather scientists and the designers and operators of communication, navigation, and other systems that depend on radio wave propagation.
-end-


National Science Foundation

Related Solar Wind Articles from Brightsurf:

Wind beneath their wings: Albatrosses fine-tuned to wind conditions
A new study of albatrosses has found that wind plays a bigger role in their decision to take flight than previously thought, and due to their differences in body size, males and females differ in their response to wind.

New research deepens understanding of Earth's interaction with the solar wind
A team of scientists at PPPL and Princeton University has reproduced a process that occurs in space to deepen understanding of what happens when the Earth encounters the solar wind.

Hydropower plants to support solar and wind energy in West Africa
Study maps smart electricity mix composed of solar, wind and hydropower for West Africa -- regional cooperation can provide up to 60% reliable and clean electricity

Solar and wind energy sites mapped globally for the first time
Researchers at the University of Southampton have mapped the global locations of major renewable energy sites, providing a valuable resource to help assess their potential environmental impact.

New research helps explain why the solar wind is hotter than expected
When the sun expels plasma, the solar wind cools as it expands through space -- but not as much as the laws of physics would predict.

Solar wind samples suggest new physics of massive solar ejections
A new study led by the University of Hawai'i (UH) at Mānoa has helped refine understanding of the amount of hydrogen, helium and other elements present in violent outbursts from the Sun, and other types of solar 'wind,' a stream of ionized atoms ejected from the Sun.

Supporting structures of wind turbines contribute to wind farm blockage effect
Much about the aerodynamic effects of larger wind farms remains poorly understood.

Parker Solar Probe traces solar wind to its source on sun's surface: coronal holes
New data from the Parker Solar Probe, which got closer to the sun than any other spacecraft, allowed physicists to map the source of a major component of the solar wind that continually peppers Earth.

Closest-ever approach to the sun gives new insights into the solar wind
The Parker Solar Probe spacecraft, which has flown closer to the sun than any mission before, has found new evidence of the origins of the solar wind.

SwRI-built instrument confirms solar wind slows farther away from the Sun
Measurements taken by the Solar Wind Around Pluto (SWAP) instrument aboard NASA's New Horizons spacecraft are providing important new insights from some of the farthest reaches of space ever explored.

Read More: Solar Wind News and Solar Wind Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.