Upper Midwest forests are losing diversity, complexity, ISU study finds

October 16, 2007

AMES, Iowa -- Forests in the nation's Upper Midwest have changed greatly since the time of the early settlers. And more changes may be coming.

That's according to research done by Lisa A. Schulte, assistant professor in Iowa State University's department of Natural Resource Ecology and Management and her team of researchers.

"There's been a shift in the entire ecosystem," said Schulte, whose research has recently been published in the journal Landscape Ecology.

For the study, Schulte, along with Laura Merrick of Iowa State; David Mladenoff of the University of Wisconsin, Madison; and Thomas Crow and David Cleland of the U.S. Forest Service, took forest composition information as described in the Public Land Survey from the mid-1800s and compared it with today's forests.

She found that none of the areas surveyed _ from Minnesota to Wisconsin to Michigan _ have the same tree species makeup as they did 200 years ago.

"This system was made up of largely conifers with some deciduous trees, and now we have the opposite," she said.

Conifers -- mostly pines and other evergreens -- have gotten more scarce while deciduous trees such as aspen, birch and maple have taken their place. Trees in today's forests also tend to be smaller.

"Our analysis shows a distinct and rapid trajectory of vegetation change toward historically unprecedented and simplified conditions," Schulte's published paper says.

"In addition to overall loss of forestland, current forests are marked by lower species diversity, functional diversity and structural complexity compared with pre-Euro-American forests."

The changes have come from several stresses on the ecosystem including pests, diseases, timber harvest and high populations of white-tailed deer, which feed on young trees, according to Schulte.

The effect of humans may be the most important factor in the shift.

"Human land use of forested regions has intensified worldwide in recent decades, threatening long-term sustainability," the report says.

"Primary effects include conversion of land cover or reversion to an earlier stage of successional development. Both types of change can have cascading effects through ecosystems; however, the long-term effects where forests are allowed to regrow are poorly understood."

What is understood, says Schulte, are the stresses the forest changes are having on wildlife, including birds. Schulte has looked at several species of warblers that have historically inhabited the area. According to her findings, the outlook for them doesn't look good.

"These birds don't have much habitat at present, compared to historical times," she said.

They are also an important and beautiful element of biodiversity, she said. They perform an important function in these forests by eating insects that can become forest pests.

Among natural resource professionals, the forests in the Upper Midwest had been suspected to be changing for some time, according to Schulte, but now there is evidence to support the theories.

"We knew that these kinds of changes had happened," she said. "But this is the first paper to really quantitatively look at it across the entire region. So, anytime you can quantitatively show something, it has a lot more power than simple conjecture."
-end-


Iowa State University

Related Biodiversity Articles from Brightsurf:

Biodiversity hypothesis called into question
How can we explain the fact that no single species predominates?

Using the past to maintain future biodiversity
New research shows that safeguarding species and ecosystems and the benefits they provide for society against future climatic change requires effective solutions which can only be formulated from reliable forecasts.

Changes in farming urgent to rescue biodiversity
Humans depend on farming for their survival but this activity takes up more than one-third of the world's landmass and endangers 62% of all threatened species.

Predicting the biodiversity of rivers
Biodiversity and thus the state of river ecosystems can now be predicted by combining environmental DNA with hydrological methods, researchers from the University of Zurich and Eawag have found.

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.

Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.

Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.

Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.

Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.

Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.

Read More: Biodiversity News and Biodiversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.