In-vitro fertilization improved with 3-D/4-D-guided embryo transfer and new placement target

October 16, 2007

Beverly Hills, Calif. and Washington DC (ASRM Annual Meeting) - October 15, 2007 - The pregnancy rate for patients undergoing in-vitro fertilization (IVF) is improved when doctors use advanced 3D/4D imaging to guide the placement of embryos to the point where the endometrium is most receptive to implantation, according to a study presented at the 63rd Annual Meeting of the American Society for Reproductive Medicine (ASRM).

Placing embryos in the optimal location within the uterus is a key factor determining the success of in-vitro fertilization. The study's lead author, Robert Gergely, M.D., has identified a new embryo placement target as the point where the fallopian tubes would intersect if they were extended beyond their natural length.

This imaginary intersection, which has been dubbed the Maximal Implantation Potential (MIP) Point, is where embryos typically implant and develop in natural pregnancies. Precision in embryo placement has become especially critical in recent years given the trend to limit the number of embryos transferred during in-vitro fertilization to just a single embryo in order to reduce the likelihood of multiple births.

The study, titled "Maximal Implantation Potential (MIP) Point - Suggested Target for Optimal Embryo Placement Within the Uterine Cavity During Embryo Transfer" (ASRM: P-665), was led by Dr. Gergely, who serves as medical director of the 3D Sonography Center of Beverly Hills (Beverly Hills, Calif.), and was formerly acting director of obstetrics at Cedars Sinai Medical Center in Los Angeles.

The six-year retrospective, observational study evaluated 5,073 patients with a mean age of 38.3 years who received in-vitro fertilization using 3D/4D-guided embryo transfer at the Southern California Reproductive Center (Beverly Hills, Calif.). In each case, embryo placement was targeted to the new Maximal Implantation Potential (MIP) Point.

The patients achieved an overall pregnancy rate of 40.34 percent, which is 10.04 percent higher than the rate achieved at the Center prior to Dr. Gergely's introduction of the 3D/4D-guided MIP Point technique in 2001. Earlier study results based on 1,222 patients were published in the August 2005 issue of the journal Fertility and Sterility (Vol. 84, No. 2).

The study included in-vitro fertilization patients from UCLA Medical Center, Cedars Sinai Medical Center and independent fertility specialists in the Los Angeles area. A total of 21 physicians employed Dr. Gergely's technique. Once introduced, the MIP Point was accepted over time as the optimal target for embryo placement by all of the physicians, and the 3D/4D-guided embryo transfer technique was adopted as the standard operating procedure for all embryo transfers.

"The old technique for placing embryos using 2D ultrasound alone was essentially a guessing game," said Dr. Gergely. "While 3D imaging allows doctors to visualize the entire uterine cavity and identify the MIP Point, it's only with the addition of 4D imaging that we can target and guide embryos to the optimal, most natural location for each patient."

The MIP Point varies from patient to patient depending on the shape of the uterus. Using 3D/4D imaging to target the MIP Point enables doctors to more effectively individualize embryo transfer and improve the pregnancy rate.

With the new technique, Dr. Gergely uses 3D ultrasound to locate the patient's MIP Point. He then uses 4D ultrasound to help the specialist performing the embryo transfer guide the catheter tip in real time to the target location. Once the tip of the catheter is over the MIP Point, the embryo is released. When this occurs, a distinct flash on the 4D image indicates the moment the embryo is placed, as well as its precise location.

"Using 3D/4D-guided embryo transfer to target the MIP Point places embryos where nature intended, and where they have the best chance to implant and develop," added Dr. Gergely.

Dr. Gergely cautions that even with the new technique, there remains significant room to improve the IVF pregnancy rate, which can be affected by several factors including the quality of embryos and receptivity of the endmetrium.
-end-
More information about 3D/4D-guided embryo transfer and the MIP Point target, including video of the procedure, is available at www.3Dsono.com.

About the ASRM

The American Society for Reproductive Medicine, founded in 1944, is an organization of more than 8,000 physicians, researchers, nurses, technicians, and other professionals dedicated to advancing knowledge and expertise in reproductive biology. Affiliated societies include the Society for Assisted Reproductive Technology, the Society for Male Reproduction and Urology, the Society for Reproductive Endocrinology and Infertility, and the Society of Reproductive Surgeons.

ExcelPR Group

Related Embryos Articles from Brightsurf:

Zebrafish embryos help prove what happens to nanoparticles in the blood
What happens to the nanoparticles when they are injected into the bloodstream, for example, to destroy solid tumours?

Artificial intelligence system developed to help better select embryos for implantation
Investigators from Brigham and Women's Hospital and Massachusetts General Hospital are developing an artificial intelligence system with the goal of improving IVF success by helping embryologists objectively select embryos most likely to result in a healthy birth.

Embryos taking shape via buckling
The embryo of an animal first looks like a hollow sphere.

Who's your daddy? Male seahorses transport nutrients to embryos
New research by Dr Camilla Whittington and her team at the University of Sydney has found male seahorses transport nutrients to their developing babies during pregnancy.

Study suggests embryos could be susceptible to coronavirus
Genes that are thought to play a role in how the SARS-CoV-2 virus infects our cells have been found to be active in embryos as early as during the second week of pregnancy, say scientists at the University of Cambridge and the California Institute of Technology (Caltech).

Spawning fish and embryos most vulnerable to climate's warming waters
Spawning fish and embryos are far more vulnerable to Earth's warming waters than fish in other life stages, according to a new study, which uniquely relates fish physiological tolerance to temperature across the lifecycles of nearly 700 fish species.

Animal embryos evolved before animals
A new study by an international team of researchers, led by scientists from the University of Bristol and Nanjing Institute of Geology and Palaeontology, has discovered that animal-like embryos evolved long before the first animals appear in the fossil record.

Choosing the best embryos
Struggling with infertility? You are not alone. Infertility affects one out of every six Canadian couples.

Turtle embryos play a role in determining their own sex
In certain turtle species, the temperature of the egg determines whether the offspring is female or male.

Early in vitro testing for adverse effects on embryos
ETH researchers have combined embryonic cells and liver cells in a new cell culture test.

Read More: Embryos News and Embryos Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.