Emotion and scent create lasting memories -- even in a sleeping brain

October 16, 2008

DURHAM, NC -- When French memoirist Marcel Proust dipped a pastry into his tea, the distinctive scent it produced suddenly opened the flood gates of his memory.

In a series of experiments with sleeping mice, researchers at the Duke University Medical Center have shown that the part of the brain that processes scents is indeed a key part of forming long-term memories, especially involving other individuals.

"We can all relate to the experience of walking into a room and smelling something that sparks a vivid, emotional memory about a family member from years or even decades ago," says Stephen Shea, Ph.D., the lead author of the study published in The Journal of Neuroscience. "This research sought to understand that phenomenon on a cellular level."

The researchers examined how strong memories are formed by creating new memories in the minds of mice while under sedation and monitoring their response to a memory-inducing stimulus afterwards, when they were awake.

"Our work is unique because it allows us to examine the cellular make-up of a memory, evaluate how the neurons change when a memory is formed and learn how that memory affects behavior," Shea adds.

The researchers created memories by stimulating the release of noradrenaline, a chemical present in the body during strong emotional events ranging from excitement to fear.

Previous studies have established a link between noradrenaline and the formation of enduring memories, especially during intense social events such as mating and childbirth. In mice and humans, the presence of noradrenaline also creates changes in the odor processing center of the brain, called the olfactory bulb.

"When an animal forms a strong memory about another, it is reliant on odor cues and noradrenaline. Both need to be present at the same time in order for the memory to be formed," Shea says. "Long-term memories created under these conditions often result in a permanent change in behavior."

The Duke team administered anesthesia to a mouse and stimulated the release of noradrenaline with an electrode while wafting the scent of either food or the urine of another mouse under the nose.

"We wanted to see if these two elements - noradrenaline and odor - present at the same time were the key ingredients needed in the recipe for creation of memory - this is a concept that had not been directly tested before this study," Shea says. "In essence, we recreated the chemical reaction that would occur when the mouse experiences a social event, such as giving birth," Shea says.

Researchers knew they could observe brain activity in more detail when the mouse was under anesthesia. If awake, the mouse would be forming memories from the surrounding environment. "When the animal is asleep, you can watch neurons in the brain rewire to store a memory and once awake see what the mouse learned even though it was asleep when the memory was created."

What they saw was an approximate 40 percent reduction in neuron activation after triggering the noradrenaline release - suggesting that a memory of the odor had been formed.

A day later, after the mouse was awake, the team observed changes in behavior in response to the scents, showing that they remembered the smells from when they were asleep.

"This work may have implications for furthering our understanding of how long-lasting memories are formed that are important to social bonding," says Richard Mooney, Ph.D., co-author and associate professor of neurobiology.
-end-
The study was supported by grants from the National Institutes of Health. Drs. Shea and Mooney also would like to acknowledge the invaluable contributions of the late Dr. Lawrence C. Katz to this work.

Duke University Medical Center

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.