Nav: Home

Protons hog the momentum in neutron-rich nuclei

October 16, 2014

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using data from nuclear physics experiments carried out at the Department of Energy's Thomas Jefferson National Accelerator Facility, researchers have now shown for the first time that this phenomenon exists in nuclei heavier than carbon, including aluminum, iron and lead.

The phenomenon also surprisingly allows a greater fraction of the protons than neutrons to have high momentum in these relatively neutron-rich nuclei, which is contrary to long-accepted theories of the nucleus and has implications for ultra-cold atomic gas systems and neutron stars. The results will be published online by the journal Science, on the Science Express website: http://www.sciencexpress.org/

The research builds on earlier work featured in Science that found that protons and neutrons in light nuclei pair up briefly in the nucleus, a phenomenon called a short-range correlation. Nucleons prefer pairing up with nucleons of a different type (proton preferred neutrons to other protons) by 20 to 1, and nucleons involved in a short-range correlation carry higher momentum than unpaired ones.

Using data from an experiment conducted in 2004, the researchers were able to identify high-momentum nucleons involved in short-range correlations in heavier nuclei. In the experiment, the Jefferson Lab Continuous Electron Beam Accelerator Facility produced a 5.01 GeV beam of electrons to probe the nuclei of carbon, aluminum, iron and lead. The outgoing electrons and high-momentum protons were measured.

"We found this dominance of proton-neutron pairs in the nuclei we studied. What's striking is this pair-dominance all the way to lead," says Doug Higinbotham, a staff scientist at Jefferson Lab and a lead coauthor on the paper.

Then the researchers compared the momenta of protons versus neutrons in these nuclei. According to the Pauli exclusion principle, certain like particles can't have the same momentum state. So, if you have a bunch of neutrons together, some will have low momentum, and others will have high momentum; the more neutrons you have, the more high-momentum neutrons you would see, as they fill up higher and higher momentum states.

But according to Higinbotham, that expected picture is not what the researchers found when they measured high-momentum protons in neutron-rich nuclei.

"What this paper is saying is the reverse, that the protons actually have the higher-average momentum. And it's because they've all paired up with neutrons," Higinbotham says. "It's like a dance with too many girls (neutrons) and only a few boys (protons). Those boys are dancing their little hearts out, because there aren't very many of them. So the average proton momentum is going to be higher than the average neutron momentum, because it's mostly the neutrons that are sitting there, doing nothing, with nothing to pair up with, except themselves."

Higinbotham notes that the neutrons may also pair up briefly with other neutrons in short-range correlations and protons with other protons. However, these like-particle brief pairings occur once for roughly every 20 unlike-particle brief pairings.

Now, the researchers hope to extend these new findings to other, similar systems, such as the quarks in nucleons and atoms in cold gases. According to Or Hen, a graduate student at Tel Aviv University in Israel and the paper's lead author, he and his colleagues are already reaching out to other researchers.

"We expect that this will also happen in ultra-cold atomic gas systems. And we're having meetings with those researchers. If they find the same phenomenon, then we can use the flexibility of their experimental systems to go to extreme cases of very hard-to-study nuclear systems, such as the large imbalances of protons and neutrons that you can find in neutron stars," Or said.

To further that goal, Misak Sargsian, a lead coauthor and professor at Florida International University, said he's extending this work into his own theoretical calculations of neutron stars.

"Think of a neutron star like it's a huge nucleus, where you have ten times more neutrons than protons. The effect should be very, very profound for neutron stars. So this opens up a new direction for research," Sargsian said.

According to Lawrence Weinstein, a lead coauthor and eminent scholar and professor at Old Dominion University in Norfolk, Va., the scientists would also like to continue their studies of the pairs.

"We'd like to measure a lot more aspects of how protons and neutrons pair up in nuclei. So we know not just protons prefer neutrons, but how are the pairs behaving, in detail," he said.

This new result was made possible by an initiative funded by a grant from the U.S. Department of Energy and led by Weinstein and Sargsian, as well as Mark Strikman, a distinguished professor at Penn State, and Sebastian Kuhn, a professor and eminent scholar at Old Dominion University. The data-mining initiative consisted of re-analyzing experimental data from completed experiments in an attempt to glean new information that previously had not been considered or was missed. A collaboration of more than 140 researchers from more than 40 institutions and nine countries contributed to the result. Researchers at two U.S. Department of Energy national labs, Jefferson Lab and Argonne National Lab, participated in the research.

The paper will be published online by the journal Science, at the Science Express web site, on Thursday, 16 October, 2014. See http://www.sciencexpress.org, and also http://www.aaas.org. Science and Science Express are published by the AAAS, the science society, the world's largest general scientific organization.
-end-
This work was supported by the U.S. Department of Energy's Office of Science, the U.S. National Science Foundation, Israel Science Foundation, Chilean Comisión Nacional de Investigación Científica y Technológica, French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique, French-American Cultural Exchange, Italian Istituto Nazionale di Fisica Nucleare, National Research Foundation of Korea and the U.K.'s Science and Technology Facilities Council. CEBAF is a DOE Office of Science User Facility.

Jefferson Science Associates, LLC, a joint venture of the Southeastern Universities Research Association, Inc. and PAE Applied Technologies, manages and operates the Thomas Jefferson National Accelerator Facility, or Jefferson Lab, for the U.S. Department of Energy's Office of Science.

Jefferson Lab is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Thomas Jefferson National Accelerator Facility

Related Neutron Stars Articles:

'Strange' glimpse into neutron stars and symmetry violation
New results from precision particle detectors at the Relativistic Heavy Ion Collider (RHIC) offer a fresh glimpse of the particle interactions that take place in the cores of neutron stars and give nuclear physicists a new way to search for violations of fundamental symmetries in the universe.
The force is strong in neutron stars
Physicists at MIT and elsewhere have for the first time characterized the strong nuclear force, and the interactions between protons and neutrons, at extremely short distances.
How big is the neutron?
The size of neutrons cannot be measured directly: it can only be determined from experiments involving other particles.
New neutron detector can fit in your pocket
Researchers at Northwestern University and Argonne National Laboratory have developed a new material that opens doors for a new class of neutron detectors.
A new theory for how black holes and neutron stars shine bright
Columbia astrophysicists employed massive super-computer simulations to calculate the mechanisms that accelerate charged particles in extreme environments.
Scientists find evidence of missing neutron star
The leftovers from a spectacular supernova that revolutionized our understanding of how stars end their lives have finally been spotted by astronomers at Cardiff University.
Glitch in neutron star reveals its hidden secrets
Neutron stars are not only the most dense objects in the Universe, but they rotate very fast and regularly.
Massive stars grow same way as light stars, just bigger
Astronomers obtained the first detailed face-on view of a gaseous disk feeding the growth of a massive baby star.
Two neutron stars collided near the solar system billions of years ago
Columbia University and University of Florida researchers finds sign of cosmic event that created elements that became part of us.
6.6 billion light years away: Neutron stars merger radiance observed
An international team led by Professor XUE Yongquan from University of Science and Technology announced their observation of a unique X-ray signal from 6.6 billion light years away, which provides new insights into the physics of neutron stars.
More Neutron Stars News and Neutron Stars Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.